# NumpyGCN **Repository Path**: ShawLen/numpy-gcn ## Basic Information - **Project Name**: NumpyGCN - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-06-08 - **Last Updated**: 2021-06-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # CS 6787 Final Project: Graph Convolutional Network Analysis In this repository we implement a Graph Convolutional Network using exclusively python primitives and compare its performance with Thomas N. Kipf, Max Welling, [Semi-Supervised Classification with Graph Convolutional Networks](http://arxiv.org/abs/1609.02907) (ICLR 2017)'s TensorFlow and Pytorch implementation. For more information on Graph Convolutional networks see [GCN](http://tkipf.github.io/graph-convolutional-networks/) ## Numpy Implementation ```bash python numpyGCN/train.py ``` ## TensorFlow Implementation First run... ```bash python tfGCN/setup.py install ``` and then ```bash python tfGCN/train.py ``` ## PyTorch Implementation ```bash python torchGCN/train.py ```