# TF2-RL **Repository Path**: TOUtheeng/TF2-RL ## Basic Information - **Project Name**: TF2-RL - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-12-04 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Reinforcement Learning Agents Implemented for Tensorflow 2.0+ ## New Updates! - DDPG with prioritized replay - Primal-Dual DDPG for CMDP ## Future Plans - SAC Discrete ## Usage - Install dependancies imported ([my tf2 conda env as reference](https://github.com/anita-hu/TF2-RL/blob/master/mytf2env.txt)) - Each file contains example code that runs training on CartPole env - Training: `python3 TF2_DDPG_LSTM.py` - Tensorboard: `tensorboard --logdir=DDPG/logs` ## Hyperparameter tuning - Install hyperopt https://github.com/hyperopt/hyperopt - Optional: switch agent used and configure param space in `hyperparam_tune.py` - Run: `python3 hyperparam_tune.py` ## Agents Agents tested using CartPole env. | Name | On/off policy | Model | Action space support | | --- | --- | --- | --- | | [DQN](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | off-policy | Dense, LSTM | discrete | | [DDPG](https://arxiv.org/pdf/1509.02971.pdf) | off-policy | Dense, LSTM | discrete, continuous | | [AE-DDPG](https://arxiv.org/pdf/1903.00827.pdf) | off-policy | Dense | discrete, continuous | | [SAC:bug:](https://arxiv.org/pdf/1812.05905.pdf) | off-policy | Dense | continuous | | [PPO](https://arxiv.org/pdf/1707.06347.pdf) | on-policy | Dense | discrete, continuous | #### Contrained MDP | Name | On/off policy | Model | Action space support | | --- | --- | --- | --- | | [Primal-Dual DDPG](https://arxiv.org/pdf/1802.06480.pdf) | off-policy | Dense | discrete, continuous| ## Models Models used to generate the demos are included in the repo, you can also find q value, reward and/or loss graphs ## Demos | DQN Basic, time step = 4, 500 reward | DQN LSTM, time step = 4, 500 reward | | --- | --- | | | | | DDPG Basic, 500 reward | DDPG LSTM, time step = 5, 500 reward | | --- | --- | | | | | AE-DDPG Basic, 500 reward | PPO Basic, 500 reward | | --- | -- | | | |