Score
0
1 Unstar Star 2 Fork 0

TensorLayer / srganPython

Create your Gitee Account
Explore and code with more than 5 million developers,Free private repositories !:)
Sign up
This repository doesn't specify license. Without author's permission, this code is only for learning and cannot be used for other purposes.
SRGAN: Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network 开源中国官方镜像 spread retract

http://github.com/tensorlayer

Clone or download
Cancel
Notice: Creating folder will generate an empty file .keep, because not support in Git
Loading...
README.md

Super Resolution Examples

We run this script under TensorFlow 2.0 and the TensorLayer 2.0+. For TensorLayer 1.4 version, please check release.

🚀🚀🚀🚀🚀🚀 THIS PROJECT WILL BE CLOSED AND MOVED TO THIS FOLDER IN A MONTH.

🚀🚀🚀🚀🚀🚀 THIS PROJECT WILL BE CLOSED AND MOVED TO THIS FOLDER IN A MONTH.

🚀🚀🚀🚀🚀🚀 THIS PROJECT WILL BE CLOSED AND MOVED TO THIS FOLDER IN A MONTH.

SRGAN Architecture

TensorFlow Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Results

Prepare Data and Pre-trained VGG

    1. You need to download the pretrained VGG19 model in here as tutorial_models_vgg19.py show.
    1. You need to have the high resolution images for training.
    • In this experiment, I used images from DIV2K - bicubic downscaling x4 competition, so the hyper-paremeters in config.py (like number of epochs) are seleted basic on that dataset, if you change a larger dataset you can reduce the number of epochs.
    • If you dont want to use DIV2K dataset, you can also use Yahoo MirFlickr25k, just simply download it using train_hr_imgs = tl.files.load_flickr25k_dataset(tag=None) in main.py.
    • If you want to use your own images, you can set the path to your image folder via config.TRAIN.hr_img_path in config.py.

Run

config.TRAIN.img_path = "your_image_folder/"
  • Start training.
python train.py
  • Start evaluation.
python train.py --mode=evaluate 

Reference

Author

Citation

If you find this project useful, we would be grateful if you cite the TensorLayer paper:

@article{tensorlayer2017,
author = {Dong, Hao and Supratak, Akara and Mai, Luo and Liu, Fangde and Oehmichen, Axel and Yu, Simiao and Guo, Yike},
journal = {ACM Multimedia},
title = {{TensorLayer: A Versatile Library for Efficient Deep Learning Development}},
url = {http://tensorlayer.org},
year = {2017}
}

Other Projects

Discussion

License

Comments ( 0 )

Sign in for post a comment

Python
1
https://gitee.com/TensorLayer/srgan.git
git@gitee.com:TensorLayer/srgan.git
TensorLayer
srgan
srgan
master

Search

132457 8cb2edc1 1899542 131848 70c8d3a4 1899542