# Self6D-Diff-Renderer **Repository Path**: USTC_HISAI/self6-d-diff-renderer ## Basic Information - **Project Name**: Self6D-Diff-Renderer - **Description**: The differentiable rendering code for "Self6D: Self-Supervised Monocular 6D Object Pose Estimation (ECCV 2020, oral)" - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-07-09 - **Last Updated**: 2021-07-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Self6D-Diff-Renderer This is the code of differentiable rendering used in the work: **Gu Wang\*, Fabian Manhardt\*, Jianzhun Shao, Xiangyang Ji, Nassir Navab, Federico Tombari. Self6D: Self-Supervised Monocular 6D Object Pose Estimation. In ECCV 2020 (oral).** [[ArXiv]](https://arxiv.org/abs/2004.06468) [[Video]](https://youtu.be/bEtzjb8f430) [[Bilibili]](https://www.bilibili.com/video/BV1iV411U77h/) We mainly extend the implementation of DIB-Renderer from [kaolin](https://github.com/NVIDIAGameWorks/kaolin) to support: - perspective projection with real camera intrinsics - rendering depth maps ## Requirements 1. Ubuntu >= 16.04, CUDA >= 10.0, Python >= 3.6, PyTorch >=1.3 2. kaolin (currently only support <= v0.1) ``` git clone https://github.com/NVIDIAGameWorks/kaolin.git cd kaolin git checkout v0.1 python setup.py develop ``` ## Usage We provide an example for rendering LINEMOD objects, just run ``` python tests/test_dib_render_LM_batch_depth.py ``` ## Citing If you find this useful in your research, please consider citing: ``` @InProceedings{wang2020self6d, title={Self6D: Self-Supervised Monocular 6D Object Pose Estimation}, author={Wang, Gu and Manhardt, Fabian and Shao, Jianzhun and Ji, Xiangyang and Navab, Nassir and Tombari, Federico}, booktitle={The European Conference on Computer Vision (ECCV)}, month={August}, year={2020} } ``` and the original DIB-Renderer ``` @inproceedings{chen2019learning_dibrenderer, title={Learning to predict 3d objects with an interpolation-based differentiable renderer}, author={Chen, Wenzheng and Ling, Huan and Gao, Jun and Smith, Edward and Lehtinen, Jaakko and Jacobson, Alec and Fidler, Sanja}, booktitle={NeurIPS}, pages={9605--9616}, year={2019} } ```