# tensor-learning **Repository Path**: Visitor_li/tensor-learning ## Basic Information - **Project Name**: tensor-learning - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-05-03 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Tensor Learning (张量学习) [![MIT License](https://img.shields.io/badge/license-MIT-green.svg)](https://opensource.org/licenses/MIT) ![Python 3.7](https://img.shields.io/badge/Python-3.7-blue.svg) [![GitHub stars](https://img.shields.io/github/stars/xinychen/tensor-learning.svg?logo=github&label=Stars&logoColor=white)](https://github.com/xinychen/tensor-learning) Tutorials and Python codes for tensor factorization, tensor completion and tensor regression techniques with the following real-world applications: - Image inpainting - Spatiotemporal data imputation - Recommender systems In a hurry? Please check out our contents as follows. Contents --- - Part 1: Foundations - 1 Proximal Methods - [1.1 Iterative Shrinkage Thresholding Algorithm (ISTA)](xxxx) - [1.2 Singular Value Thresholding](https://nbviewer.jupyter.org/github/xinychen/tensor-learning/blob/master/content/SVT.ipynb) - 2 Bayesian Inference Methods - 3 Time Series Analysis - [1.1 Vector Autoregressive (VAR) Model](xxxx) - Part 2: Matrix Factorization and Completion Techniques - 1 Low-Rank Matrix Completion - [1.1 Building on Nuclear Norm Regularization](https://nbviewer.jupyter.org/github/xinychen/tensor-learning/blob/master/content/LRMC.ipynb) - [1.2 Building on Nonconvex Regularization](xxxx) - 2 Low-Rank Matrix Factorization - [2.1 A Gradient Descent Solution](xxxx) - [2.2 An Alternating Least Square Solution](xxxx) - [2.3 A Probabilistic Solution](xxxx) - [2.4 A Bayesian Solution](xxxx) - 3 Temporal Regularized Matrix Factorization - [3.1 An Alternating Least Square Solution](xxxx) - [3.2 A Probabilistic Solution](xxxx) - 4 Bayesian Temporal Matrix Factorization - [4.1 Incorporating Autoregressive (AR) Model](xxxx) - [4.2 Incorporating Vector Autoregressive (VAR) Model](https://nbviewer.jupyter.org/github/xinychen/tensor-learning/blob/master/content/BTMF.ipynb) - Part 3: Tensor Factorization Techniques - [1 Tensor Factorization with Alternating Least Square (ALS)](https://nbviewer.jupyter.org/github/xinychen/tensor-learning/blob/master/part-03/chapter-01.ipynb) - [2 Nonnegative Tensor Factorization](https://nbviewer.jupyter.org/github/xinychen/tensor-learning/blob/master/part-03/chapter-02.ipynb) - [3 Bayesian Gaussian Tensor Factorization](https://nbviewer.jupyter.org/github/xinychen/tensor-learning/blob/master/part-03/chapter-03.ipynb) - Part 4: Low-Rank Tensor Completion Techniques [coming soon!] - 1 Tensor Robust Principal Component Analysis - [1.1 Modeling for Tensor Recovery Problem](https://nbviewer.jupyter.org/github/xinychen/tensor-learning/blob/master/content/TRPCA.ipynb) - [1.2 Modeling for Outlier Detection Problem](https://nbviewer.jupyter.org/github/xinychen/tensor-learning/blob/master/content/TRPCA-Outlier.ipynb) - Part 5: Multidimensional Tensor Regression [coming soon!] Quick Run --- - If you just want to read the tutorial, please follow the link of above contents directly. - If you want to run the code, please - download (or clone) this repository, - open the `.ipynb` file using [Jupyter notebook](https://jupyter.org/install.html), - and run the code.