# Tacotron2_cpu_gpu **Repository Path**: X-CCS/Tacotron2_cpu_gpu ## Basic Information - **Project Name**: Tacotron2_cpu_gpu - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-11-27 - **Last Updated**: 2020-12-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Tacotron2_cpu_gpu Inference modified based on: https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2 Use PyTorch 20.03-py3 NGC container or newer bash scripts/docker/build.sh bash scripts/docker/interactive.sh Tacotron2 and WaveGlow checkpoints for inference can be downloaded from NGC, and place in the current directory: https://ngc.nvidia.com/catalog/models/nvidia:tacotron2pyt_fp16/files?version=3 https://ngc.nvidia.com/catalog/models/nvidia:waveglow256pyt_fp16/files?version=2 GPU run: python inference.py --tacotron2 tacotron2_1032590_6000_amp --waveglow waveglow_1076430_14000_amp --wn-channels 256 -o output/ -i phrases/phrase.txt GPU benchmarking: bash test_infer.sh bash run_latency_tests.sh (different batch size, precision) CPU run: export CUDA_VISIBLE_DEVICES= python inference.py --tacotron2 tacotron2_1032590_6000_amp --waveglow waveglow_1076430_14000_amp --wn-channels 256 --cpu-run -o output/ -i phrases/phrase.txt CPU benchmarking: bash test_infer.sh --cpu-run bash run_latency_tests_cpu.sh (different batch size)