# XequiNet **Repository Path**: X1X1010/xequinet ## Basic Information - **Project Name**: XequiNet - **Description**: eXtended Equivariant Graph Neural Network - **Primary Language**: Python - **License**: BSD-3-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2023-09-04 - **Last Updated**: 2024-03-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## XequiNet XequiNet is an equivariant graph neural network for predicting properties of chemical molecules or periodical systems. ## Requirements **The following versions of these packages are only recommended for use.** python 3.9
pytorch 2.0
pyg (follow pytorch)
pytorch-cluster (follow pytorch)
pytorch-scatter (follow pytorch)
e3nn 0.5
pytorch-warmup 0.1
pydantic 2.6
ase 3.22
pyscf 2.4 ## Extra requirements **The geomeTRIC package is used for geometry optimization.** geometric 1.0 **The TBLite packages are used for delta learning with GFN2-xTB as base.** tblite 0.3
tblite-python 0.3 **The i-PI package is used for path integral molecular dynamics** ipi 2.6 ## Setups ### From Source Once the requirements are installed, running ``` pip install -e . ``` ## Usage See the markdown files in `docs` for details. `docs/training.md`: Training and testing with dataset in `hdf5` format. No support for CPU training at this time. `docs/inference.md`: Prediction with a trained model `xxx.pt`. `docs/geometry.md`: Geometry optimization and molecular dynamics with a **JIT** model `xxx.jit`.