# XequiNet
**Repository Path**: X1X1010/xequinet
## Basic Information
- **Project Name**: XequiNet
- **Description**: eXtended Equivariant Graph Neural Network
- **Primary Language**: Python
- **License**: BSD-3-Clause
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 1
- **Created**: 2023-09-04
- **Last Updated**: 2024-03-27
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
## XequiNet
XequiNet is an equivariant graph neural network for predicting properties of chemical molecules or periodical systems.
## Requirements
**The following versions of these packages are only recommended for use.**
python 3.9
pytorch 2.0
pyg (follow pytorch)
pytorch-cluster (follow pytorch)
pytorch-scatter (follow pytorch)
e3nn 0.5
pytorch-warmup 0.1
pydantic 2.6
ase 3.22
pyscf 2.4
## Extra requirements
**The geomeTRIC package is used for geometry optimization.**
geometric 1.0
**The TBLite packages are used for delta learning with GFN2-xTB as base.**
tblite 0.3
tblite-python 0.3
**The i-PI package is used for path integral molecular dynamics**
ipi 2.6
## Setups
### From Source
Once the requirements are installed, running
```
pip install -e .
```
## Usage
See the markdown files in `docs` for details.
`docs/training.md`: Training and testing with dataset in `hdf5` format. No support for CPU training at this time.
`docs/inference.md`: Prediction with a trained model `xxx.pt`.
`docs/geometry.md`: Geometry optimization and molecular dynamics with a **JIT** model `xxx.jit`.