# rknn_model_zoo
**Repository Path**: ZTL522/rknn_model_zoo
## Basic Information
- **Project Name**: rknn_model_zoo
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-07-18
- **Last Updated**: 2025-07-29
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
[简体中文](README_CN.md) | [English](README.md)
# RKNN Model Zoo
## 简介
RKNN Model Zoo基于 RKNPU SDK 工具链开发, 提供了目前主流算法的部署例程. 例程包含导出RKNN模型, 使用 Python API, CAPI 推理 RKNN 模型的流程.
- 支持 `RK3562`, `RK3566`, `RK3568`, `RK3576`, `RK3588`, `RV1126B` 平台。
- 部分支持`RV1103`, `RV1106`
- 支持 `RV1109`, `RV1126`, `RK1808` 平台。
## 依赖库安装
RKNN Model Zoo依赖 RKNN-Toolkit2 进行模型转换, 编译安卓demo时需要安卓编译工具链, 编译Linux demo时需要Linux编译工具链。这些依赖的安装请参考 https://github.com/airockchip/rknn-toolkit2/tree/master/doc 的 Quick Start 文档.
- 请注意, 安卓编译工具链建议使用 `r18` 或 `r19` 版本. 使用其他版本可能会遇到 Cdemo 编译失败的问题.
- 请注意, Linux编译工具链建议使用`gcc-linaro-6.3.1(aarch64)/gcc-arm-8.3(armhf)/armhf-uclibcgnueabihf(armhf, 用于RV1106/RV1103系列)`,使用其他版本可能会遇到Cdemo编译失败的问题。详细编译指南请参考 [Compilation_Environment_Setup_Guide_CN.md](./docs/Compilation_Environment_Setup_Guide_CN.md)
## 模型支持说明
以下demo除了从对应的仓库导出模型, 也可从网盘 https://console.zbox.filez.com/l/8ufwtG (提取码: rknn) 下载模型文件.
| Category | Name | Dtype | Model Download Link | Support platform |
| --- | --- | --- | --- | --- |
| 图像分类 | [mobilenet](https://github.com/onnx/models/tree/8e893eb39b131f6d3970be6ebd525327d3df34ea/vision/classification/mobilenet/model/mobilenetv2-12.onnx) | FP16/INT8 | [mobilenetv2-12.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/mobilenet/mobilenetv2-12.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
RV1103\|RV1106
RK1808\|RK3399PRO
RV1109\|RV1126 |
| 图像分类 | [resnet](https://github.com/onnx/models/tree/8e893eb39b131f6d3970be6ebd525327d3df34ea/vision/classification/resnet/model/resnet50-v2-7.onnx) | FP16/INT8 | [resnet50-v2-7.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/resnet/resnet50-v2-7.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
RK1808\|RK3399PRO
RV1109\|RV1126 |
| 物体检测 | [yolov5](https://github.com/airockchip/yolov5) | FP16/INT8 | [./yolov5s_relu.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov5/yolov5s_relu.onnx)
[./yolov5n.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov5/yolov5n.onnx)
[./yolov5s.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov5/yolov5s.onnx)
[./yolov5m.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov5/yolov5m.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
RV1103\|RV1106
RK1808\|RK3399PRO
RV1109\|RV1126 |
| 物体检测 | [yolov6](https://github.com/airockchip/yolov6) | FP16/INT8 | [./yolov6n.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov6/yolov6n.onnx)
[./yolov6s.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov6/yolov6s.onnx)
[./yolov6m.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov6/yolov6m.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
RK1808\|RK3399PRO
RV1109\|RV1126 |
| 物体检测 | [yolov7](https://github.com/airockchip/yolov7) | FP16/INT8 | [./yolov7-tiny.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov7/yolov7-tiny.onnx)
[./yolov7.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov7/yolov7.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
RK1808\|RK3399PRO
RV1109\|RV1126 |
| 物体检测 | [yolov8](https://github.com/airockchip/ultralytics_yolov8) | FP16/INT8 | [./yolov8n.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov8/yolov8n.onnx)
[./yolov8s.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov8/yolov8s.onnx)
[./yolov8m.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov8/yolov8m.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
RK1808\|RK3399PRO
RV1109\|RV1126 |
| 物体检测 | [yolov8_obb](https://github.com/airockchip/ultralytics_yolov8) | INT8 | [./yolov8n-obb.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov8_obb/yolov8n-obb.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
RK1808\|RK3399PRO
RV1109\|RV1126 |
| 物体检测 | [yolov10](https://github.com/THU-MIG/yolov10) | FP16/INT8 | [./yolov10n.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov10/yolov10n.onnx)
[./yolov10s.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov10/yolov10s.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
RV1103\|RV1106
RK1808\|RK3399PRO
RV1109\|RV1126 |
| 物体检测 | [yolo11](https://github.com/airockchip/ultralytics_yolo11) | FP16/INT8 | [./yolo11n.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolo11/yolo11n.onnx)
[./yolo11s.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolo11/yolo11s.onnx)
[./yolo11m.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolo11/yolo11m.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
RV1103\|RV1106
RK1808\|RK3399PRO
RV1109\|RV1126 |
| 物体检测 | [yolox](https://github.com/airockchip/YOLOX) | FP16/INT8 | [./yolox_s.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolox/yolox_s.onnx)
[./yolox_m.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolox/yolox_m.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
RK1808\|RK3399PRO
RV1109\|RV1126 |
| 物体检测 | [ppyoloe](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.6/configs/ppyoloe) | FP16/INT8 | [./ppyoloe_s.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/ppyoloe/ppyoloe_s.onnx)
[./ppyoloe_m.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/ppyoloe/ppyoloe_m.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
RK1808\|RK3399PRO
RV1109\|RV1126 |
| 物体检测 | [yolo_world](https://github.com/AILab-CVC/YOLO-World) | FP16/INT8 | [./yolo_world_v2s.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolo_world/yolo_world_v2s.onnx)
[./clip_text.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolo_world/clip_text.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
|
| 人体关键点 | [yolov8_pose](https://github.com/airockchip/ultralytics_yolov8) | INT8 | [./yolov8n-pose.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov8_pose/yolov8n-pose.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B |
| 图像分割 | deeplabv3 | FP16/INT8 | [./deeplab-v3-plus-mobilenet-v2.pb](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/deeplabv3/deeplab-v3-plus-mobilenet-v2.pb) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
RK1808\|RK3399PRO
RV1109\|RV1126 |
| 图像分割 | [yolov5_seg](https://github.com/airockchip/yolov5) | FP16/INT8 | [./yolov5n-seg.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov5_seg/yolov5n-seg.onnx)
[./yolov5s-seg.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov5_seg/yolov5s-seg.onnx)
[./yolov5m-seg.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov5_seg/yolov5m-seg.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
RK1808\|RK3399PRO
RV1109\|RV1126 |
| 图像分割 | [yolov8_seg](https://github.com/airockchip/ultralytics_yolov8) | FP16/INT8 | [./yolov8n-seg.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov8_seg/yolov8n-seg.onnx)
[./yolov8s-seg.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov8_seg/yolov8s-seg.onnx)
[./yolov8m-seg.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yolov8_seg/yolov8m-seg.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
RK1808\|RK3399PRO
RV1109\|RV1126 |
| 图像分割 | [ppseg](https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.8) | FP16/INT8 | [pp_liteseg_cityscapes.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/ppseg/pp_liteseg_cityscapes.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
RK1808\|RK3399PRO
RV1109\|RV1126 |
| 图像分割 | [mobilesam](https://github.com/ChaoningZhang/MobileSAM) | FP16 | [mobilesam_encoder_tiny.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/mobilesam/mobilesam_encoder_tiny.onnx)
[mobilesam_decoder.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/mobilesam/mobilesam_decoder.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B |
| 人脸关键点 | [RetinaFace](https://github.com/biubug6/Pytorch_Retinaface) | INT8 | [RetinaFace_mobile320.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/RetinaFace/RetinaFace_mobile320.onnx)
[RetinaFace_resnet50_320.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/RetinaFace/RetinaFace_resnet50_320.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
RK1808\|RK3399PRO
RV1109\|RV1126 |
| 车牌识别 | [LPRNet](https://github.com/sirius-ai/LPRNet_Pytorch/) | FP16/INT8 | [./lprnet.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/LPRNet/lprnet.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
RV1103\|RV1106
RK1808\|RK3399PRO
RV1109\|RV1126 |
| 文字检测 | [PPOCR-Det](https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.7) | FP16/INT8 | [../ppocrv4_det.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/PPOCR/ppocrv4_det.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
RK1808\|RK3399PRO
RV1109\|RV1126 |
| 文字识别 | [PPOCR-Rec](https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.7) | FP16 | [../ppocrv4_rec.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/PPOCR/ppocrv4_rec.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
RK1808\|RK3399PRO
RV1109\|RV1126 |
| 自然语言翻译 | [lite_transformer](https://github.com/airockchip/lite-transformer) | FP16 | [lite-transformer-encoder-16.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/lite_transformer/lite-transformer-encoder-16.onnx)
[lite-transformer-decoder-16.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/lite_transformer/lite-transformer-decoder-16.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
RK1808\|RK3399PRO
RV1109\|RV1126 |
| 图文匹配 | [clip](https://huggingface.co/openai/clip-vit-base-patch32) | FP16 | [./clip_images.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/clip/clip_images.onnx)
[./clip_text.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/clip/clip_text.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
|
| 语音识别 | [wav2vec2](https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec#wav2vec-20) | FP16 | [wav2vec2_base_960h_20s.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/wav2vec2/wav2vec2_base_960h_20s.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B |
| 语音识别 | [whisper](https://github.com/openai/whisper) | FP16 | [whisper_encoder_base_20s.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/whisper/whisper_encoder_base_20s.onnx)
[whisper_decoder_base_20s.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/whisper/whisper_decoder_base_20s.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
|
| 语音识别 | [zipformer](https://huggingface.co/csukuangfj/k2fsa-zipformer-bilingual-zh-en-t) | FP16 | [encoder-epoch-99-avg-1.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/zipformer/encoder-epoch-99-avg-1.onnx)
[decoder-epoch-99-avg-1.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/zipformer/decoder-epoch-99-avg-1.onnx)
[joiner-epoch-99-avg-1.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/zipformer/joiner-epoch-99-avg-1.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
|
| 语音分类 | [yamnet](https://www.tensorflow.org/hub/tutorials/yamnet) | FP16 | [yamnet_3s.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/yamnet/yamnet_3s.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B |
| 文字转语音 | [mms_tts](https://huggingface.co/facebook/mms-tts-eng) | FP16 | [mms_tts_eng_encoder_200.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/mms_tts/mms_tts_eng_encoder_200.onnx)
[mms_tts_eng_decoder_200.onnx](https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/mms_tts/mms_tts_eng_decoder_200.onnx) | RK3562\|RK3566\|RK3568\|RK3576\|RK3588\|RV1126B
|
## Model performance benchmark(FPS)
| demo | model_name | inputs_shape | dtype | RK3566
RK3568 | RK3562 | RK3588
@single_core | RK3576
@single_core | RV1109 | RV1126 | RK1808 |
| ---------------- | ----------------------------------- | ------------------------------------ | ----- | ------------------ | -------------- | ------------------------ | ------------------------ | ---------- | ---------- | ---------- |
| mobilenet | mobilenetv2-12 | [1, 3, 224, 224] | INT8 | 180.7 | 281.3 | 450.7 | 467.0 | 212.9 | 322.3 | 170.3 |
| resnet | resnet50-v2-7 | [1, 3, 224, 224] | INT8 | 37.9 | 54.9 | 110.1 | 99.0 | 24.4 | 36.2 | 37.1 |
| yolov5 | yolov5s_relu | [1, 3, 640, 640] | INT8 | 25.5 | 33.2 | 66.1 | 65.0 | 20.2 | 29.2 | 37.2 |
| | yolov5n | [1, 3, 640, 640] | INT8 | 39.7 | 47.4 | 82.5 | 112.7 | 36.3 | 53.2 | 61.2 |
| | yolov5s | [1, 3, 640, 640] | INT8 | 19.3 | 23.6 | 48.4 | 57.5 | 13.6 | 20.0 | 28.2 |
| | yolov5m | [1, 3, 640, 640] | INT8 | 8.6 | 10.8 | 20.9 | 23.7 | 5.8 | 8.5 | 13.3 |
| yolov6 | yolov6n | [1, 3, 640, 640] | INT8 | 48.8 | 56.4 | 106.4 | 109.1 | 37.8 | 56.8 | 66.8 |
| | yolov6s | [1, 3, 640, 640] | INT8 | 15.2 | 17.3 | 36.4 | 35.0 | 10.8 | 16.3 | 24.1 |
| | yolov6m | [1, 3, 640, 640] | INT8 | 7.2 | 8.6 | 17.8 | 17.4 | 5.6 | 8.3 | 11.5 |
| yolov7 | yolov7-tiny | [1, 3, 640, 640] | INT8 | 27.9 | 36.5 | 72.7 | 74.8 | 15.4 | 22.4 | 37.2 |
| | yolov7 | [1, 3, 640, 640] | INT8 | 4.6 | 5.9 | 11.4 | 13.0 | 3.3 | 4.8 | 7.4 |
| yolov8 | yolov8n | [1, 3, 640, 640] | INT8 | 34.0 | 40.9 | 73.5 | 90.2 | 24.0 | 35.4 | 42.3 |
| | yolov8s | [1, 3, 640, 640] | INT8 | 15.1 | 18.4 | 38.0 | 40.8 | 8.9 | 13.1 | 19.1 |
| | yolov8m | [1, 3, 640, 640] | INT8 | 6.5 | 8.2 | 16.2 | 16.7 | 3.9 | 5.8 | 9.1 |
| yolov8_obb | yolov8n-obb | [1, 3, 640, 640] | INT8 | 33.9 | 41.3 | 74.0 | 90.2 | 25.1 | 37.3 | 42.8 |
| yolov10 | yolov10n | [1, 3, 640, 640] | INT8 | 20.7 | 34.1 | 61.2 | 80.2 | / | / | / |
| | yolov10s | [1, 3, 640, 640] | INT8 | 10.3 | 16.9 | 33.8 | 39.9 | / | / | / |
| yolo11 | yolo11n | [1, 3, 640, 640] | INT8 | 20.6 | 34.0 | 60.0 | 77.9 | 11.7 | 17.0 | 17.6 |
| | yolo11s | [1, 3, 640, 640] | INT8 | 10.2 | 16.7 | 33.0 | 38.2 | 5.0 | 7.3 | 8.4 |
| | yolo11m | [1, 3, 640, 640] | INT8 | 4.6 | 6.5 | 12.7 | 14.6 | 2.8 | 4.0 | 5.1 |
| yolox | yolox_s | [1, 3, 640, 640] | INT8 | 15.2 | 18.3 | 37.1 | 41.5 | 10.6 | 15.7 | 23.0 |
| | yolox_m | [1, 3, 640, 640] | INT8 | 6.6 | 8.2 | 16.0 | 17.6 | 4.6 | 6.8 | 10.7 |
| ppyoloe | ppyoloe_s | [1, 3, 640, 640] | INT8 | 17.1 | 20.0 | 32.5 | 41.3 | 11.2 | 16.4 | 21.1 |
| | ppyoloe_m | [1, 3, 640, 640] | INT8 | 7.8 | 9.2 | 15.8 | 17.8 | 5.2 | 7.7 | 9.4 |
| yolo_world | yolo_world_v2s | [1, 3, 640, 640] | INT8 | 7.4 | 9.6 | 22.1 | 22.3 | / | / | / |
| | clip_text | [1, 20] | FP16 | 29.8 | 67.4 | 95.8 | 63.5 | / | / | / |
| yolov8_pose | yolov8n-pose | [1, 3, 640, 640] | INT8 | 22.6 | 31.0 | 55.9 | 66.8 | / | / | / |
| deeplabv3 | deeplab-v3-plus-mobilenet-v2 | [1, 513, 513, 1] | INT8 | 10.9 | 21.4 | 34.0 | 39.4 | 10.1 | 13.0 | 4.4 |
| yolov5_seg | yolov5n-seg | [1, 3, 640, 640] | INT8 | 32.2 | 38.5 | 69.3 | 88.3 | 28.6 | 42.2 | 49.6 |
| | yolov5s-seg | [1, 3, 640, 640] | INT8 | 15.0 | 18.1 | 36.8 | 41.6 | 9.6 | 14.0 | 22.5 |
| | yolov5m-seg | [1, 3, 640, 640] | INT8 | 6.8 | 8.4 | 16.4 | 18.0 | 4.7 | 6.8 | 10.8 |
| yolov8_seg | yolov8n-seg | [1, 3, 640, 640] | INT8 | 27.8 | 33.0 | 60.8 | 71.1 | 18.6 | 27.6 | 32.9 |
| | yolov8s-seg | [1, 3, 640, 640] | INT8 | 11.7 | 14.1 | 28.9 | 30.8 | 6.6 | 9.8 | 14.6 |
| | yolov8m-seg | [1, 3, 640, 640] | INT8 | 5.2 | 6.4 | 12.6 | 12.7 | 3.1 | 4.6 | 6.9 |
| ppseg | ppseg_lite_1024x512 | [1, 3, 512, 512] | INT8 | 5.9 | 13.9 | 35.7 | 33.6 | 18.4 | 27.1 | 20.9 |
| mobilesam | mobilesam_encoder_tiny | [1, 3, 448, 448] | FP16 | 1.0 | 6.6 | 10.0 | 11.9 | / | / | / |
| | mobilesam_decoder | [1, 1, 112, 112] | FP16 | 24.3 | 69.6 | 116.4 | 108.6 | / | / | / |
| RetinaFace | RetinaFace_mobile320 | [1, 3, 320, 320] | INT8 | 156.4 | 300.8 | 227.2 | 470.5 | 144.8 | 212.5 | 198.5 |
| | RetinaFace_resnet50_320 | [1, 3, 320, 320] | INT8 | 18.7 | 26.9 | 49.2 | 56.6 | 14.6 | 20.8 | 24.6 |
| LPRNet | lprnet | [1, 3, 24, 94] | FP16 | 143.2 | 420.6 | 586.4 | 647.8 | 30.6(INT8) | 47.6(INT8) | 30.1(INT8) |
| PPOCR-Det | ppocrv4_det | [1, 3, 480, 480] | INT8 | 22.1 | 28.0 | 50.7 | 64.3 | 11.0 | 16.1 | 14.2 |
| PPOCR-Rec | ppocrv4_rec | [1, 3, 48, 320] | FP16 | 19.5 | 54.3 | 73.9 | 96.8 | 1.0 | 1.6 | 6.7 |
| lite_transformer | lite-transformer-encoder-16 | embedding-256, token-16 | FP16 | 337.5 | 725.8 | 867.6 | 784.1 | 22.7 | 35.4 | 98.3 |
| | lite-transformer-decoder-16 | embedding-256, token-16 | FP16 | 142.5 | 252.0 | 343.8 | 272.3 | 48.0 | 65.8 | 109.9 |
| clip | clip_images | [1, 3, 224, 224] | FP16 | 2.3 | 3.4 | 6.5 | 6.7 | / | / | / |
| | clip_text | [1, 20] | FP16 | 29.7 | 66.6 | 96.0 | 63.7 | / | / | / |
| wav2vec2 | wav2vec2_base_960h_20s | 20s audio | FP16 | RTF
0.817 | RTF
0.323 | RTF
0.133 | RTF
0.073 | / | / | / |
| whisper | whisper_base_20s | 20s audio | FP16 | RTF
1.178 | RTF
0.420 | RTF
0.215 | RTF
0.218 | / | / | / |
| zipformer | zipformer-bilingual-zh-en-t | streaming audio | FP16 | RTF
0.196 | RTF
0.116 | RTF
0.065 | RTF
0.082 | / | / | / |
| yamnet | yamnet_3s | 3s audio | FP16 | RTF
0.013 | RTF
0.008 | RTF
0.004 | RTF
0.005 | / | / | / |
| mms_tts | mms_tts_eng_200 | token-200 | FP16 | RTF
0.311 | RTF
0.138 | RTF
0.069 | RTF
0.069 | / | / | / |
- 该性能数据基于各平台的最大NPU频率进行测试
- 该性能数据指模型推理的耗时, 不包含前后处理的耗时
- `/`表示当前版本暂不支持
## Demo编译说明
对于 Linux 系统的开发板:
```sh
./build-linux.sh -t -a -d [-b ] [-m]
-t : target (rk356x/rk3576/rk3588/rv1106/rv1126b/rv1126/rk1808)
-a : arch (aarch64/armhf)
-d : demo name
-b : build_type(Debug/Release)
-m : enable address sanitizer, build_type need set to Debug
Note: 'rk356x' represents rk3562/rk3566/rk3568, 'rv1106' represents rv1103/rv1106, 'rv1126' represents rv1109/rv1126,'rv1126b' is different from 'rv1126'.
# 以编译64位Linux RK3566的yolov5 demo为例:
./build-linux.sh -t rk356x -a aarch64 -d yolov5
```
对于 Android 系统的开发板:
```sh
# 对于 Android 系统的开发板, 首先需要根据实际情况, 设置安卓NDK编译工具的路径
export ANDROID_NDK_PATH=~/opts/ndk/android-ndk-r18b
./build-android.sh -t -a -d [-b ] [-m]
-t : target (rk356x/rk3588/rk3576)
-a : arch (arm64-v8a/armeabi-v7a)
-d : demo name
-b : build_type (Debug/Release)
-m : enable address sanitizer, build_type need set to Debug
# 以编译64位Android RK3566的yolov5 demo为例:
./build-android.sh -t rk356x -a arm64-v8a -d yolov5
```
## 版本说明
| 版本 | 说明 |
| ----- | ------------------------------------------------------------ |
| 2.3.2 | 新增 `RV1126B` 平台支持 |
| 2.3.0 | 新增 yolo11、zipformer、mms_tts 等示例 |
| 2.2.0 | 添加新例程 wav2vec, mobilesam. 更新部分模型的导出说明 |
| 2.1.0 | 新例程添加, 包含 yolov8_pose, yolov8_obb, yolov10, yolo_world, clip, whisper, yamnet
部分模型暂不支持 `RK1808`, `RV1109`, `RV1126` 平台, 将在下个版本添加支持 |
| 2.0.0 | 新增 `RK3576` 平台支持
新增 `RK1808`, `RV1109`, `RV1126` 平台支持 |
| 1.6.0 | 提供目标检测、图像分割、OCR、车牌识别等多个例程
支持`RK3562`, `RK3566`, `RK3568`, `RK3588`平台
部分支持`RV1103`, `RV1106`平台 |
| 1.5.0 | 提供Yolo检测模型的demo |
## 环境依赖
RKNN Model Zoo 的例程基于当前最新的 RKNPU SDK 进行验证。若使用低版本的 RKNPU SDK 进行验证, 推理性能、推理结果可能会有差异。
| 版本 | RKNPU2 SDK | RKNPU1 SDK |
| ----- | ---------- | ---------- |
| 2.3.2 | >=2.3.2 | >=1.7.5 |
| 2.3.0 | >=2.3.0 | >=1.7.5 |
| 2.2.0 | >=2.2.0 | >=1.7.5 |
| 2.1.0 | >=2.1.0 | >=1.7.5 |
| 2.0.0 | >=2.0.0 | >=1.7.5 |
| 1.6.0 | >=1.6.0 | - |
| 1.5.0 | >=1.5.0 | >=1.7.3 |
## RKNPU相关资料
- RKNPU2 SDK: https://github.com/airockchip/rknn-toolkit2
- RKNPU1 SDK: https://github.com/airockchip/rknn-toolkit
## 许可证
[Apache License 2.0](./LICENSE)