# InGAN **Repository Path**: Zhou_Chuanyou/InGAN ## Basic Information - **Project Name**: InGAN - **Description**: Official code for the paper "InGAN: Capturing and Retargeting the DNA of a Natural Image" - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-30 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # InGAN ### Official code for the paper "InGAN: Capturing and Retargeting the DNA of a Natural Image" Project page: http://www.wisdom.weizmann.ac.il/~vision/ingan/ (See our results and visual comparison to other methods) **Accepted ICCV'19 (Oral)** ---------- ![](/figs/fruits.gif) ---------- If you find our work useful in your research or publication, please cite our work: ``` @InProceedings{InGAN, author = {Assaf Shocher and Shai Bagon and Phillip Isola and Michal Irani}, title = {InGAN: Capturing and Retargeting the "DNA" of a Natural Image}, booktitle = {The IEEE International Conference on Computer Vision (ICCV)}, year = {2019} } ``` ---------- # Usage: ## Test ### Quick example First you have to [download the example checkpoint file](http://www.wisdom.weizmann.ac.il/~vision/ingan/resources/checkpoint_0075000.pth.tar), and put it in ``` InGAN/examples/fruit/ ```. Will defaulty run on the fruits image, using an existing checkpoint. ``` python test.py ``` ### General testing By default, when testing you get a collage of various sizes and a smooth video of the transforms. You can also choose to test specific sizes, non-rectangular transforms and more. See configs.py, for all the options. You can either edit this file or modify configuration from command-line. Examples: ``` python test.py --input_image_path /path/to/some/image.png # choose input image python test.py --test_non_rect # also output non rectangular transformation results python test.py --test_vid_scale 2.0, 0.5, 2.5, 0.2 # boundary scales for output video: [max_v, min_v, max_h, min_h] ``` Please see configs.py for many more options ## Train ### Quick example Will defaulty run on the fruits image. ``` python train.py ``` ### General training See configs.py for all the options. You can either edit this file or modify configuration from command-line. Examples: ``` python train.py --input_image_path /path/to/some/image.png # choose input image python train.py --G_num_resblocks 3 # change number of residual block in the generator ``` Please see configs.py for many more options ### monitoring In you results folder, monitor files will be periodically created, example: ![](/figs/monitor_60000.png) ## Produce complex animations by scripts: Please see the file supp_video.py ## Parallel training for many images Please see the file train_supp_mat.py