# lessons **Repository Path**: Zhou_Chuanyou/lessons ## Basic Information - **Project Name**: lessons - **Description**: ๐ Learn ML with clean code, simplified math and illustrative visuals. As you learn, work on interesting projects and share them on https://madewithml.com for the community to discover and learn from! - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-30 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
## Build your portfolio As you learn ML, it's important to work on projects, so check out Made With ML for inspiration and to create a profile to showcase your own projects!
|
๐ Notebooks | ๐ Python | ๐ข NumPy |
| ๐ผ Pandas | TensorFlow |
PyTorch |
|
๐ Linear Regression | ๐ Logistic Regression | ๏ธ๐ Multilayer Perceptrons |
| ๐ Data & Models | ๐ Utilities | ๏ธโ๏ธ Preprocessing | |
| ๏ธ๐ผ Convolutional Neural Networks | ๐ Embeddings | ๐ Recurrent Neural Networks |
| ๐ APIs (video releasing very soon) |
|
๐ Web scraping | ๐ SQL | ๐จ Bootstrap |
|
๐ณ Docker | ๐ข Kubernetes | ๐ MLFlow |
|
๐ง Attention | ๐ Language Modeling | ๐ค Transformers | ๐คฏ SHA-RNN |
| ๐ญ Generative Adversarial Networks | ๐ฎ Autoencoders | ๐ท๏ธ Graph Neural Networks | โฑ Temporal CNNs | |
| ๐ Reinforcement Learning | ๐ฏ One-shot Learning | ๐ฑ Bayesian Deep Learning | ๐ Causal Inference |
|
๐ธ Image Recognition | ๐ผ๏ธ Image Segmentation | ๐จ Image Generation |
| ๐ Text classification | ๐ฌ Named Entity Recognition | ๐ง Knowledge Graphs | |
| ๐๏ธ Topic Modeling | ๐ก Clustering | ๐ต๏ธ Anomaly Detection |
|
โฐ Time-series | ๐ค Speech Recognition | ๐ Recommendation Systems |
| ๐๏ธ Interpretability | โ๏ธ Model Compression | โ๏ธ Data Annotation | |
| โ๏ธ Imbalanced Datasets | ๐ป Missing Values | ๐ Data Visualization |
|
๐งช Hypothesis Testing | โค๏ธ Maximum Likelihood Estimation | ๐ถ Naive Bayes |
| ๐ Linear Regression | ๐ Logistic Regression | ๐ฆบ Support Vector Machines | |
| ๐ณ Random Forests | ๐ Nearest Neighbors | ๐ฟ Gaussian Processes | |
| ๐ฅ Matrix Decomposition | ๐ฉ Hidden Markov Models | ๐ฆ Survival Analysis |