# DirectionalFeature **Repository Path**: a243269910/DirectionalFeature ## Basic Information - **Project Name**: DirectionalFeature - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-01-24 - **Last Updated**: 2022-01-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DirectionalFeature This repository contains the code of the following paper "**Learning Directional Feature Maps for Cardiac MRI Segmentation (published in MICCAI2020)**", https://arxiv.org/abs/2007.11349 ![](./pipeline.png) ## Citation Please cite the related works in your publications if it helps your research: ``` @inproceedings{cheng2020learning, title={Learning directional feature maps for cardiac mri segmentation}, author={Cheng, Feng and Chen, Cheng and Wang, Yukang and Shi, Heshui and Cao, Yukun and Tu, Dandan and Zhang, Changzheng and Xu, Yongchao}, booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention}, pages={108--117}, year={2020}, organization={Springer} } ``` ## Usage ### ACDC Data Preparation 1. Register and download ACDC-2017 dataset from https://www.creatis.insa-lyon.fr/Challenge/acdc/index.html 2. Create a folder outside the project with name **ACDC_DataSet** and copy the dataset. 3. From the project folder open file acdc_data_preparation.py. 4. In the file, set the path to ACDC training dataset is pointed as: ```complete_data_path = '../../ACDC_DataSet/training' ```. 5. Run the script acdc_data_preparation.py. 6. The processed data for training is generated outside the project folder named *processed_acdc_dataset*. 7. Run the ./libs/datastes/gen_acdcjson.py to generate the data list for ACDC training and validation. ### Training ``` cd ./tools python -m torch.distributed.launch --nproc_per_node 4 --master_port $RANDOM train.py --batch_size 12 --mgpus 0,1,2,3 --output_dir logs/... --train_with_eval ```