竞争性自适应重加权采样法(competitive adapative reweighted sampling, CARS)是一种结合蒙特卡洛采样与PLS模型回归系数的特征变量选择方法,模仿达尔文理论中的 ”适者生存“ 的原则(Li et al., 2009)。CARS 算法中,每次通过自适应加权采样(adapative reweighted sampling, ARS)保留PLS模型中 回归系数绝对值权重较大的点作为新的子集,去掉权值较小的点,然后基于新的子集建立PLS模型,经过多次计算,选择PLS模型交互验证均方根误差(RMSECV)最小的子集中的波长作为特征波长。
CARS算法的具体过程如下。
采用 蒙特卡洛采样法,每次随机从校正集中选择一定数量(一般为80%)的样本进入建模集,剩余的20%作为预测集建立PLS模型。蒙特卡洛的采样次数(N)需要提前设定。记录每一次采样过程PLS模型中的回归系数的绝对值权重,$|b_i|$为第i个变量的回归系数绝对值,$w_i$为第i个变量的回归系数绝对值权重
\[ w_i=|b_i|/\sum_{i=1}^m|b_i| \] m为每次采样中剩余的变量数。
利用指数衰减函数(exponentially decreasing function, EDF)强行去除回归系数绝对值权重相对较小的波长。在第i次基于MC采样建立PLS模型时,根据EDF得到保留的波长点的比例$R_i$为
\[ R_i=\mu e^{-k_i} \] 式中,$\mu$和k是常数,可以按照以下两种情况计算。
在一次采样并进行相应计算时,所有的波长都参与了建模分析,因此此时保留的波长点的比例为1。
在最后一次采样在(第N次)完成并进行相应计算时,只剩下两个波长参与PLS建模,此时保留的波长点的比例为 $2/n$,其中$n$是原始波长点数。 由以上最初及最后一次采样的情况可知,$\mu$和k的计算公式为 \[ \mu=(\cfrac{n}{2})^{\cfrac{1}{N-1}},k=\cfrac{ln(\cfrac{n}{n})}{N-1} \]
在每次采样时,都从上一次采样时的变量数中采用自适应加权采样(ARS)选择数量为$R_i * n$个的波长变量,进行PLS建模,计算RMSECV。
在N次采样完成之后,CARS 算法得到了N组候选的特征波长子集,以及对应的RMSECV值,选择RMSECV最小值所对应的波长变量子集为特征波长。
说明: 竞争性自适应重加权算法(CARS)是通过自适应重加权采样(ARS)技术选择出PLS模型中回归系数绝对值大的波长点,去掉权重小的波长点,利用交互验证选出RMSECV指最低的子集,可有效寻出最优变量组合。
如果您编程能力较弱 对python理解不足 不建议参考使用本项目代码 本项目代码未经大量测试 无法保证通用性。如果您对本项目进行了结构性更改,请一定通知我进行同步更改。
# 导入 pandas 读取数据
import pandas as pd
import numpy as np
# 读取数据
data = pd.read_csv("./data/peach_spectra_brix.csv")
# m * n
print("数据矩阵 data.shape:",data.shape)
# 50个样本, 600个 波段 第一列是 桃子糖度值 需要分离开
X = data.values[:,1:]
# 等同操作
#X = data.drop(['Brix'], axis=1)
y = data.values[:,0]
# 等同操作
# y = data.loc[:,'Brix'].values
print(f"X.shape:{X.shape}, y.shape:{y.shape}")
import CARS
lis = CARS.CARS_Cloud(X,y)
print("获取波段数:",len(lis))
print(lis)
X_ = X[:,lis]
cars具有随机性,建议运行五次选取最佳rmsecv及波段数。
CARS开发使用的PLS 是基于 sklearn 的 NIPALS 并非 MATLAB 的 SIMPLS, 因此 系数趋势图 绘制不理想,暂时砍掉了。除此之外,该版本全部基于python开发完成,与MATLAB存在较大差异在所难免,核心算法思想一致,请自行选择,后续会上传 MATLAB版本 CARS。
示例数据来源:nirpyresearch.com
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。
1. 开源生态
2. 协作、人、软件
3. 评估模型