# awesome-semantic-segmentation **Repository Path**: acting_chen/awesome-semantic-segmentation ## Basic Information - **Project Name**: awesome-semantic-segmentation - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-24 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome) # Awesome Semantic Segmentation ## Networks by architecture ### Semantic segmentation - U-Net [https://arxiv.org/pdf/1505.04597.pdf] [2015] + https://github.com/zhixuhao/unet [Keras][![GitHub stars](https://img.shields.io/github/stars/zhixuhao/unet.svg?logo=github&label=Stars)](https://github.com/zhixuhao/unet) + https://github.com/jocicmarko/ultrasound-nerve-segmentation [Keras][![GitHub stars](https://img.shields.io/github/stars/jocicmarko/ultrasound-nerve-segmentation.svg?logo=github&label=Stars)](https://github.com/jocicmarko/ultrasound-nerve-segmentation) + https://github.com/EdwardTyantov/ultrasound-nerve-segmentation [Keras][![GitHub stars](https://img.shields.io/github/stars/EdwardTyantov/ultrasound-nerve-segmentation.svg?logo=github&label=Stars)](https://github.com/EdwardTyantov/ultrasound-nerve-segmentation) + https://github.com/ZFTurbo/ZF_UNET_224_Pretrained_Model [Keras][![GitHub stars](https://img.shields.io/github/stars/ZFTurbo/ZF_UNET_224_Pretrained_Model.svg?logo=github&label=Stars)](https://github.com/ZFTurbo/ZF_UNET_224_Pretrained_Model) + https://github.com/yihui-he/u-net [Keras][![GitHub stars](https://img.shields.io/github/stars/yihui-he/u-net.svg?logo=github&label=Stars)](https://github.com/yihui-he/u-net) + https://github.com/jakeret/tf_unet [Tensorflow][![GitHub stars](https://img.shields.io/github/stars/jakeret/tf_unet.svg?logo=github&label=Stars)](https://github.com/jakeret/tf_unet) + https://github.com/divamgupta/image-segmentation-keras [Keras][![GitHub stars](https://img.shields.io/github/stars/divamgupta/image-segmentation-keras.svg?logo=github&label=Stars)](https://github.com/divamgupta/image-segmentation-keras) + https://github.com/ZijunDeng/pytorch-semantic-segmentation [PyTorch][![GitHub stars](https://img.shields.io/github/stars/ZijunDeng/pytorch-semantic-segmentation.svg?logo=github&label=Stars)](https://github.com/ZijunDeng/pytorch-semantic-segmentation) + https://github.com/akirasosa/mobile-semantic-segmentation [Keras][![GitHub stars](https://img.shields.io/github/stars/akirasosa/mobile-semantic-segmentation.svg?logo=github&label=Stars)](https://github.com/akirasosa/mobile-semantic-segmentation) + https://github.com/orobix/retina-unet [Keras][![GitHub stars](https://img.shields.io/github/stars/orobix/retina-unet.svg?logo=github&label=Stars)](https://github.com/orobix/retina-unet) + https://github.com/qureai/ultrasound-nerve-segmentation-using-torchnet [Torch][![GitHub stars](https://img.shields.io/github/stars/qureai/ultrasound-nerve-segmentation-using-torchnet.svg?logo=github&label=Stars)](https://github.com/orobix/retina-unet) + https://github.com/ternaus/TernausNet [PyTorch][![GitHub stars](https://img.shields.io/github/stars/ternaus/TernausNet.svg?logo=github&label=Stars)](https://github.com/ternaus/TernausNet) + https://github.com/qubvel/segmentation_models [Keras][![GitHub stars](https://img.shields.io/github/stars/qubvel/segmentation_models.svg?logo=github&label=Stars)](https://github.com/qubvel/segmentation_models) + https://github.com/LeeJunHyun/Image_Segmentation#u-net [PyTorch][![GitHub stars](https://img.shields.io/github/stars/LeeJunHyun/Image_Segmentation.svg?logo=github&label=Stars)](https://github.com/LeeJunHyun/Image_Segmentation) + https://github.com/yassouali/pytorch_segmentation [PyTorch][![GitHub stars](https://img.shields.io/github/stars/yassouali/pytorch_segmentation.svg?logo=github&label=Stars)](https://github.com/yassouali/pytorch_segmentation) + https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/ [Caffe + Matlab] - SegNet [https://arxiv.org/pdf/1511.00561.pdf] [2016] + https://github.com/alexgkendall/caffe-segnet [Caffe] + https://github.com/developmentseed/caffe/tree/segnet-multi-gpu [Caffe] + https://github.com/preddy5/segnet [Keras] + https://github.com/imlab-uiip/keras-segnet [Keras] + https://github.com/andreaazzini/segnet [Tensorflow] + https://github.com/fedor-chervinskii/segnet-torch [Torch] + https://github.com/0bserver07/Keras-SegNet-Basic [Keras] + https://github.com/tkuanlun350/Tensorflow-SegNet [Tensorflow] + https://github.com/divamgupta/image-segmentation-keras [Keras] + https://github.com/ZijunDeng/pytorch-semantic-segmentation [PyTorch] + https://github.com/chainer/chainercv/tree/master/examples/segnet [Chainer] + https://github.com/ykamikawa/keras-SegNet [Keras] + https://github.com/ykamikawa/tf-keras-SegNet [Keras] + https://github.com/yassouali/pytorch_segmentation [PyTorch][![GitHub stars](https://img.shields.io/github/stars/yassouali/pytorch_segmentation)](https://github.com/yassouali/pytorch_segmentation) - DeepLab [https://arxiv.org/pdf/1606.00915.pdf] [2017] + https://bitbucket.org/deeplab/deeplab-public/ [Caffe] + https://github.com/cdmh/deeplab-public [Caffe] + https://bitbucket.org/aquariusjay/deeplab-public-ver2 [Caffe] + https://github.com/TheLegendAli/DeepLab-Context [Caffe] + https://github.com/msracver/Deformable-ConvNets/tree/master/deeplab [MXNet] + https://github.com/DrSleep/tensorflow-deeplab-resnet [Tensorflow] + https://github.com/muyang0320/tensorflow-deeplab-resnet-crf [TensorFlow] + https://github.com/isht7/pytorch-deeplab-resnet [PyTorch] + https://github.com/bermanmaxim/jaccardSegment [PyTorch] + https://github.com/martinkersner/train-DeepLab [Caffe] + https://github.com/chenxi116/TF-deeplab [Tensorflow] + https://github.com/bonlime/keras-deeplab-v3-plus [Keras] + https://github.com/tensorflow/models/tree/master/research/deeplab [Tensorflow] + https://github.com/speedinghzl/pytorch-segmentation-toolbox [PyTorch] + https://github.com/kazuto1011/deeplab-pytorch [PyTorch] + https://github.com/youansheng/torchcv [PyTorch] + https://github.com/yassouali/pytorch_segmentation [PyTorch][![GitHub stars](https://img.shields.io/github/stars/yassouali/pytorch_segmentation)](https://github.com/yassouali/pytorch_segmentation) + https://github.com/hualin95/Deeplab-v3plus [PyTorch] - FCN [https://arxiv.org/pdf/1605.06211.pdf] [2016] + https://github.com/vlfeat/matconvnet-fcn [MatConvNet] + https://github.com/shelhamer/fcn.berkeleyvision.org [Caffe] + https://github.com/MarvinTeichmann/tensorflow-fcn [Tensorflow] + https://github.com/aurora95/Keras-FCN [Keras] + https://github.com/mzaradzki/neuralnets/tree/master/vgg_segmentation_keras [Keras] + https://github.com/k3nt0w/FCN_via_keras [Keras] + https://github.com/shekkizh/FCN.tensorflow [Tensorflow] + https://github.com/seewalker/tf-pixelwise [Tensorflow] + https://github.com/divamgupta/image-segmentation-keras [Keras] + https://github.com/ZijunDeng/pytorch-semantic-segmentation [PyTorch] + https://github.com/wkentaro/pytorch-fcn [PyTorch] + https://github.com/wkentaro/fcn [Chainer] + https://github.com/apache/incubator-mxnet/tree/master/example/fcn-xs [MxNet] + https://github.com/muyang0320/tf-fcn [Tensorflow] + https://github.com/ycszen/pytorch-seg [PyTorch] + https://github.com/Kaixhin/FCN-semantic-segmentation [PyTorch] + https://github.com/petrama/VGGSegmentation [Tensorflow] + https://github.com/simonguist/testing-fcn-for-cityscapes [Caffe] + https://github.com/hellochick/semantic-segmentation-tensorflow [Tensorflow] + https://github.com/pierluigiferrari/fcn8s_tensorflow [Tensorflow] + https://github.com/theduynguyen/Keras-FCN [Keras] + https://github.com/JihongJu/keras-fcn [Keras] + https://github.com/yassouali/pytorch_segmentation [PyTorch][![GitHub stars](https://img.shields.io/github/stars/yassouali/pytorch_segmentation)](https://github.com/yassouali/pytorch_segmentation) - ENet [https://arxiv.org/pdf/1606.02147.pdf] [2016] + https://github.com/TimoSaemann/ENet [Caffe] + https://github.com/e-lab/ENet-training [Torch] + https://github.com/PavlosMelissinos/enet-keras [Keras] + https://github.com/fregu856/segmentation [Tensorflow] + https://github.com/kwotsin/TensorFlow-ENet [Tensorflow] + https://github.com/davidtvs/PyTorch-ENet [PyTorch] + https://github.com/yassouali/pytorch_segmentation [PyTorch][![GitHub stars](https://img.shields.io/github/stars/yassouali/pytorch_segmentation)](https://github.com/yassouali/pytorch_segmentation) - LinkNet [https://arxiv.org/pdf/1707.03718.pdf] [2017] + https://github.com/e-lab/LinkNet [Torch] + https://github.com/qubvel/segmentation_models [Keras] - DenseNet [https://arxiv.org/pdf/1611.09326.pdf] [2017] + https://github.com/SimJeg/FC-DenseNet [Lasagne] + https://github.com/HasnainRaz/FC-DenseNet-TensorFlow [Tensorflow] + https://github.com/0bserver07/One-Hundred-Layers-Tiramisu [Keras] - DilatedNet [https://arxiv.org/pdf/1511.07122.pdf] [2016] + https://github.com/nicolov/segmentation_keras [Keras] + https://github.com/fyu/dilation [Caffe] + https://github.com/fyu/drn#semantic-image-segmentataion [PyTorch] + https://github.com/hangzhaomit/semantic-segmentation-pytorch [PyTorch] - PixelNet [https://arxiv.org/pdf/1609.06694.pdf] [2016] + https://github.com/aayushbansal/PixelNet [Caffe] - ICNet [https://arxiv.org/pdf/1704.08545.pdf] [2017] + https://github.com/hszhao/ICNet [Caffe] + https://github.com/aitorzip/Keras-ICNet [Keras] + https://github.com/hellochick/ICNet-tensorflow [Tensorflow] + https://github.com/oandrienko/fast-semantic-segmentation [Tensorflow] + https://github.com/supervisely/supervisely/tree/master/plugins/nn/icnet [PyTorch] - ERFNet [http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17iv.pdf] [?] + https://github.com/Eromera/erfnet [Torch] + https://github.com/Eromera/erfnet_pytorch [PyTorch] - RefineNet [https://arxiv.org/pdf/1611.06612.pdf] [2016] + https://github.com/guosheng/refinenet [MatConvNet] - PSPNet [https://arxiv.org/pdf/1612.01105.pdf,https://hszhao.github.io/projects/pspnet/] [2017] + https://github.com/hszhao/PSPNet [Caffe] + https://github.com/ZijunDeng/pytorch-semantic-segmentation [PyTorch] + https://github.com/mitmul/chainer-pspnet [Chainer] + https://github.com/Vladkryvoruchko/PSPNet-Keras-tensorflow [Keras/Tensorflow] + https://github.com/pudae/tensorflow-pspnet [Tensorflow] + https://github.com/hellochick/PSPNet-tensorflow [Tensorflow] + https://github.com/hellochick/semantic-segmentation-tensorflow [Tensorflow] + https://github.com/qubvel/segmentation_models [Keras] + https://github.com/oandrienko/fast-semantic-segmentation [Tensorflow] + https://github.com/speedinghzl/pytorch-segmentation-toolbox [PyTorch] + https://github.com/youansheng/torchcv [PyTorch] + https://github.com/yassouali/pytorch_segmentation [PyTorch][![GitHub stars](https://img.shields.io/github/stars/yassouali/pytorch_segmentation)](https://github.com/yassouali/pytorch_segmentation) + https://github.com/holyseven/PSPNet-TF-Reproduce [Tensorflow][![GitHub stars](https://img.shields.io/github/stars/holyseven/PSPNet-TF-Reproduce)](https://github.com/holyseven/PSPNet-TF-Reproduce) + https://github.com/kazuto1011/pspnet-pytorch [PyTorch] - DeconvNet [https://arxiv.org/pdf/1505.04366.pdf] [2015] + http://cvlab.postech.ac.kr/research/deconvnet/ [Caffe] + https://github.com/HyeonwooNoh/DeconvNet [Caffe] + https://github.com/fabianbormann/Tensorflow-DeconvNet-Segmentation [Tensorflow] - FRRN [https://arxiv.org/pdf/1611.08323.pdf] [2016] + https://github.com/TobyPDE/FRRN [Lasagne] - GCN [https://arxiv.org/pdf/1703.02719.pdf] [2017] + https://github.com/ZijunDeng/pytorch-semantic-segmentation [PyTorch] + https://github.com/ycszen/pytorch-seg [PyTorch] + https://github.com/yassouali/pytorch_segmentation [PyTorch][![GitHub stars](https://img.shields.io/github/stars/yassouali/pytorch_segmentation)](https://github.com/yassouali/pytorch_segmentation) - LRR [https://arxiv.org/pdf/1605.02264.pdf] [2016] + https://github.com/golnazghiasi/LRR [Matconvnet] - DUC, HDC [https://arxiv.org/pdf/1702.08502.pdf] [2017] + https://github.com/ZijunDeng/pytorch-semantic-segmentation [PyTorch] + https://github.com/ycszen/pytorch-seg [PyTorch] + https://github.com/yassouali/pytorch_segmentation [PyTorch][![GitHub stars](https://img.shields.io/github/stars/yassouali/pytorch_segmentation)](https://github.com/yassouali/pytorch_segmentation) - MultiNet [https://arxiv.org/pdf/1612.07695.pdf] [2016] + https://github.com/MarvinTeichmann/MultiNet + https://github.com/MarvinTeichmann/KittiSeg - Segaware [https://arxiv.org/pdf/1708.04607.pdf] [2017] + https://github.com/aharley/segaware [Caffe] - Semantic Segmentation using Adversarial Networks [https://arxiv.org/pdf/1611.08408.pdf] [2016] + https://github.com/oyam/Semantic-Segmentation-using-Adversarial-Networks [Chainer] - PixelDCN [https://arxiv.org/pdf/1705.06820.pdf] [2017] + https://github.com/HongyangGao/PixelDCN [Tensorflow] - ShuffleSeg [https://arxiv.org/pdf/1803.03816.pdf] [2018] + https://github.com/MSiam/TFSegmentation [TensorFlow] - AdaptSegNet [https://arxiv.org/pdf/1802.10349.pdf] [2018] + https://github.com/wasidennis/AdaptSegNet [PyTorch] - TuSimple-DUC [https://arxiv.org/pdf/1702.08502.pdf] [2018] + https://github.com/TuSimple/TuSimple-DUC [MxNet] - FPN [http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf] [2017] + https://github.com/qubvel/segmentation_models [Keras] - R2U-Net [https://arxiv.org/ftp/arxiv/papers/1802/1802.06955.pdf] [2018] + https://github.com/LeeJunHyun/Image_Segmentation#r2u-net [PyTorch] - Attention U-Net [https://arxiv.org/pdf/1804.03999.pdf] [2018] + https://github.com/LeeJunHyun/Image_Segmentation#attention-u-net [PyTorch] + https://github.com/ozan-oktay/Attention-Gated-Networks [PyTorch] - DANet [https://arxiv.org/pdf/1809.02983.pdf] [2018] + https://github.com/junfu1115/DANet [PyTorch] - ShelfNet [https://arxiv.org/pdf/1811.11254.pdf] [2018] + https://github.com/juntang-zhuang/ShelfNet [PyTorch] - LadderNet [https://arxiv.org/pdf/1810.07810.pdf] [2018] + https://github.com/juntang-zhuang/LadderNet [PyTorch] - BiSeNet [https://arxiv.org/pdf/1808.00897.pdf] [2018] + https://github.com/ooooverflow/BiSeNet [PyTorch] + https://github.com/ycszen/TorchSeg [PyTorch] + https://github.com/zllrunning/face-parsing.PyTorch [PyTorch] - ESPNet [https://arxiv.org/pdf/1803.06815.pdf] [2018] + https://github.com/sacmehta/ESPNet [PyTorch] - DFN [https://arxiv.org/pdf/1804.09337.pdf] [2018] + https://github.com/ycszen/TorchSeg [PyTorch] - CCNet [https://arxiv.org/pdf/1811.11721.pdf] [2018] + https://github.com/speedinghzl/CCNet [PyTorch] - DenseASPP [http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_DenseASPP_for_Semantic_CVPR_2018_paper.pdf] [2018] + https://github.com/youansheng/torchcv [PyTorch] - Fast-SCNN [https://arxiv.org/pdf/1902.04502.pdf] [2019] + https://github.com/DeepVoltaire/Fast-SCNN [PyTorch] - HRNet [https://arxiv.org/pdf/1904.04514.pdf] [2019] + https://github.com/HRNet/HRNet-Semantic-Segmentation [PyTorch] - PSANet [https://hszhao.github.io/papers/eccv18_psanet.pdf] [2018] + https://github.com/hszhao/PSANet [Caffe] - UPSNet [https://arxiv.org/pdf/1901.03784.pdf] [2019] + https://github.com/uber-research/UPSNet [PyTorch] - ConvCRF [https://arxiv.org/pdf/1805.04777.pdf] [2018] + https://github.com/MarvinTeichmann/ConvCRF [PyTorch] - Multi-scale Guided Attention for Medical Image Segmentation [https://arxiv.org/pdf/1906.02849.pdf] [2019] + https://github.com/sinAshish/Multi-Scale-Attention [PyTorch] - DFANet [https://arxiv.org/pdf/1904.02216.pdf] [2019] + https://github.com/huaifeng1993/DFANet [PyTorch] - ExtremeC3Net [https://arxiv.org/pdf/1908.03093.pdf] [2019] + https://github.com/HYOJINPARK/ExtPortraitSeg [PyTorch] - EncNet [https://arxiv.org/pdf/1803.08904.pdf] [2018] + https://github.com/zhanghang1989/PyTorch-Encoding [PyTorch] - Unet++ [https://arxiv.org/pdf/1807.10165.pdf] [2018] + https://github.com/MrGiovanni/UNetPlusPlus [Keras] + https://github.com/4uiiurz1/pytorch-nested-unet [PyTorch] - FastFCN [https://arxiv.org/pdf/1903.11816.pdf] [2019] + https://github.com/wuhuikai/FastFCN [PyTorch] - PortraitNet [https://www.yongliangyang.net/docs/mobilePotrait_c&g19.pdf] [2019] + https://github.com/dong-x16/PortraitNet [PyTorch] ### Instance aware segmentation - FCIS [https://arxiv.org/pdf/1611.07709.pdf] + https://github.com/msracver/FCIS [MxNet] - MNC [https://arxiv.org/pdf/1512.04412.pdf] + https://github.com/daijifeng001/MNC [Caffe] - DeepMask [https://arxiv.org/pdf/1506.06204.pdf] + https://github.com/facebookresearch/deepmask [Torch] - SharpMask [https://arxiv.org/pdf/1603.08695.pdf] + https://github.com/facebookresearch/deepmask [Torch] - Mask-RCNN [https://arxiv.org/pdf/1703.06870.pdf] + https://github.com/CharlesShang/FastMaskRCNN [Tensorflow] + https://github.com/jasjeetIM/Mask-RCNN [Caffe] + https://github.com/TuSimple/mx-maskrcnn [MxNet] + https://github.com/matterport/Mask_RCNN [Keras] + https://github.com/facebookresearch/maskrcnn-benchmark [PyTorch] + https://github.com/open-mmlab/mmdetection [PyTorch] + https://github.com/ZFTurbo/Keras-Mask-RCNN-for-Open-Images-2019-Instance-Segmentation [Keras] - RIS [https://arxiv.org/pdf/1511.08250.pdf] + https://github.com/bernard24/RIS [Torch] - FastMask [https://arxiv.org/pdf/1612.08843.pdf] + https://github.com/voidrank/FastMask [Caffe] - BlitzNet [https://arxiv.org/pdf/1708.02813.pdf] + https://github.com/dvornikita/blitznet [Tensorflow] - PANet [https://arxiv.org/pdf/1803.01534.pdf] [2018] + https://github.com/ShuLiu1993/PANet [Caffe] - PAN [https://arxiv.org/pdf/1805.10180.pdf] [2018] + https://github.com/JaveyWang/Pyramid-Attention-Networks-pytorch [PyTorch] - TernausNetV2 [https://arxiv.org/pdf/1806.00844.pdf] [2018] + https://github.com/ternaus/TernausNetV2 [PyTorch] - MS R-CNN [https://arxiv.org/pdf/1903.00241.pdf] [2019] + https://github.com/zjhuang22/maskscoring_rcnn [PyTorch] - AdaptIS [https://arxiv.org/pdf/1909.07829.pdf] [2019] + https://github.com/saic-vul/adaptis [MxNet][PyTorch] - Pose2Seg [https://arxiv.org/pdf/1803.10683.pdf] [2019] + https://github.com/liruilong940607/Pose2Seg [PyTorch] - YOLACT [https://arxiv.org/pdf/1904.02689.pdf] [2019] + https://github.com/dbolya/yolact [PyTorch] - CenterMask [https://arxiv.org/pdf/1911.06667.pdf] [2019] + https://github.com/youngwanLEE/CenterMask [PyTorch] + https://github.com/youngwanLEE/centermask2 [PyTorch] - InstaBoost [https://arxiv.org/pdf/1908.07801.pdf] [2019] + https://github.com/GothicAi/Instaboost [PyTorch] - SOLO [https://arxiv.org/pdf/1912.04488.pdf][2019] + https://github.com/WXinlong/SOLO [PyTorch] - SOLOv2 [https://arxiv.org/pdf/2003.10152.pdf][2020] + https://github.com/WXinlong/SOLO [PyTorch] ### Weakly-supervised segmentation - SEC [https://arxiv.org/pdf/1603.06098.pdf] + https://github.com/kolesman/SEC [Caffe] ## RNN - ReNet [https://arxiv.org/pdf/1505.00393.pdf] + https://github.com/fvisin/reseg [Lasagne] - ReSeg [https://arxiv.org/pdf/1511.07053.pdf] + https://github.com/Wizaron/reseg-pytorch [PyTorch] + https://github.com/fvisin/reseg [Lasagne] - RIS [https://arxiv.org/pdf/1511.08250.pdf] + https://github.com/bernard24/RIS [Torch] - CRF-RNN [http://www.robots.ox.ac.uk/%7Eszheng/papers/CRFasRNN.pdf] + https://github.com/martinkersner/train-CRF-RNN [Caffe] + https://github.com/torrvision/crfasrnn [Caffe] + https://github.com/NP-coder/CLPS1520Project [Tensorflow] + https://github.com/renmengye/rec-attend-public [Tensorflow] + https://github.com/sadeepj/crfasrnn_keras [Keras] ## GANS - pix2pix [https://arxiv.org/pdf/1611.07004.pdf] [2018] + https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix [Pytorch] + https://github.com/affinelayer/pix2pix-tensorflow [Tensorflow] - pix2pixHD [https://arxiv.org/pdf/1711.11585.pdf] [2018] + https://github.com/NVIDIA/pix2pixHD - Probalistic Unet [https://arxiv.org/pdf/1806.05034.pdf] [2018] + https://github.com/SimonKohl/probabilistic_unet ## Graphical Models (CRF, MRF) + https://github.com/cvlab-epfl/densecrf + http://vladlen.info/publications/efficient-inference-in-fully-connected-crfs-with-gaussian-edge-potentials/ + http://www.philkr.net/home/densecrf + http://graphics.stanford.edu/projects/densecrf/ + https://github.com/amiltonwong/segmentation/blob/master/segmentation.ipynb + https://github.com/jliemansifry/super-simple-semantic-segmentation + http://users.cecs.anu.edu.au/~jdomke/JGMT/ + https://www.quora.com/How-can-one-train-and-test-conditional-random-field-CRF-in-Python-on-our-own-training-testing-dataset + https://github.com/tpeng/python-crfsuite + https://github.com/chokkan/crfsuite + https://sites.google.com/site/zeppethefake/semantic-segmentation-crf-baseline + https://github.com/lucasb-eyer/pydensecrf ## Datasets: + [Stanford Background Dataset](http://dags.stanford.edu/projects/scenedataset.html) + [Sift Flow Dataset](http://people.csail.mit.edu/celiu/SIFTflow/) + [Barcelona Dataset](http://www.cs.unc.edu/~jtighe/Papers/ECCV10/) + [Microsoft COCO dataset](http://mscoco.org/) + [MSRC Dataset](http://research.microsoft.com/en-us/projects/objectclassrecognition/) + [LITS Liver Tumor Segmentation Dataset](https://competitions.codalab.org/competitions/15595) + [KITTI](http://www.cvlibs.net/datasets/kitti/eval_road.php) + [Pascal Context](http://www.cs.stanford.edu/~roozbeh/pascal-context/) + [Data from Games dataset](https://download.visinf.tu-darmstadt.de/data/from_games/) + [Human parsing dataset](https://github.com/lemondan/HumanParsing-Dataset) + [Mapillary Vistas Dataset](https://www.mapillary.com/dataset/vistas) + [Microsoft AirSim](https://github.com/Microsoft/AirSim) + [MIT Scene Parsing Benchmark](http://sceneparsing.csail.mit.edu/) + [COCO 2017 Stuff Segmentation Challenge](http://cocodataset.org/#stuff-challenge2017) + [ADE20K Dataset](http://groups.csail.mit.edu/vision/datasets/ADE20K/) + [INRIA Annotations for Graz-02](http://lear.inrialpes.fr/people/marszalek/data/ig02/) + [Daimler dataset](http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/daimler_pedestrian_benchmark_d.html) + [ISBI Challenge: Segmentation of neuronal structures in EM stacks](http://brainiac2.mit.edu/isbi_challenge/) + [INRIA Annotations for Graz-02 (IG02)](https://lear.inrialpes.fr/people/marszalek/data/ig02/) + [Pratheepan Dataset](http://cs-chan.com/downloads_skin_dataset.html) + [Clothing Co-Parsing (CCP) Dataset](https://github.com/bearpaw/clothing-co-parsing) + [Inria Aerial Image](https://project.inria.fr/aerialimagelabeling/) + [ApolloScape](http://apolloscape.auto/scene.html) + [UrbanMapper3D](https://community.topcoder.com/longcontest/?module=ViewProblemStatement&rd=17007&pm=14703) + [RoadDetector](https://community.topcoder.com/longcontest/?module=ViewProblemStatement&rd=17036&pm=14735) + [Cityscapes](https://www.cityscapes-dataset.com/) + [CamVid](http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/) + [Inria Aerial Image Labeling](https://project.inria.fr/aerialimagelabeling/) ## Benchmarks + https://github.com/ZijunDeng/pytorch-semantic-segmentation [PyTorch] + https://github.com/meetshah1995/pytorch-semseg [PyTorch] + https://github.com/GeorgeSeif/Semantic-Segmentation-Suite [Tensorflow] + https://github.com/MSiam/TFSegmentation [Tensorflow] + https://github.com/CSAILVision/sceneparsing [Caffe+Matlab] + https://github.com/BloodAxe/segmentation-networks-benchmark [PyTorch] + https://github.com/warmspringwinds/pytorch-segmentation-detection [PyTorch] + https://github.com/ycszen/TorchSeg [PyTorch] + https://github.com/qubvel/segmentation_models [Keras] + https://github.com/qubvel/segmentation_models.pytorch [PyTorch] + https://github.com/Tramac/awesome-semantic-segmentation-pytorch [PyTorch] + https://github.com/hszhao/semseg [PyTorch] + https://github.com/yassouali/pytorch_segmentation [PyTorch] + https://github.com/divamgupta/image-segmentation-keras [Keras] + https://github.com/CSAILVision/semantic-segmentation-pytorch [PyTorch] + https://github.com/thuyngch/Human-Segmentation-PyTorch [PyTorch] ## Evaluation code + [Cityscapes dataset] https://github.com/phillipi/pix2pix/tree/master/scripts/eval_cityscapes ## Starter code + https://github.com/mrgloom/keras-semantic-segmentation-example ## Annotation Tools: + https://github.com/AKSHAYUBHAT/ImageSegmentation + https://github.com/kyamagu/js-segment-annotator + https://github.com/CSAILVision/LabelMeAnnotationTool + https://github.com/seanbell/opensurfaces-segmentation-ui + https://github.com/lzx1413/labelImgPlus + https://github.com/wkentaro/labelme + https://github.com/labelbox/labelbox + https://github.com/Deep-Magic/COCO-Style-Dataset-Generator-GUI + https://github.com/Labelbox/Labelbox + https://github.com/opencv/cvat + https://github.com/saic-vul/fbrs_interactive_segmentation ## Results: + [MSRC-21](http://rodrigob.github.io/are_we_there_yet/build/semantic_labeling_datasets_results.html) + [Cityscapes](https://www.cityscapes-dataset.com/benchmarks/) + [VOC2012](http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6) + https://paperswithcode.com/task/semantic-segmentation ## Metrics + https://github.com/martinkersner/py_img_seg_eval ## Losses + https://github.com/JunMa11/SegLoss + http://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf + https://arxiv.org/pdf/1705.08790.pdf + https://arxiv.org/pdf/1707.03237.pdf + http://www.bmva.org/bmvc/2013/Papers/paper0032/paper0032.pdf ## Other lists + https://github.com/tangzhenyu/SemanticSegmentation_DL + https://github.com/nightrome/really-awesome-semantic-segmentation + https://github.com/JackieZhangdx/InstanceSegmentationList ## Medical image segmentation: - DIGITS + https://github.com/NVIDIA/DIGITS/tree/master/examples/medical-imaging - U-Net: Convolutional Networks for Biomedical Image Segmentation + http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/ + https://github.com/dmlc/mxnet/issues/1514 + https://github.com/orobix/retina-unet + https://github.com/fvisin/reseg + https://github.com/yulequan/melanoma-recognition + http://www.andrewjanowczyk.com/use-case-1-nuclei-segmentation/ + https://github.com/junyanz/MCILBoost + https://github.com/imlab-uiip/lung-segmentation-2d + https://github.com/scottykwok/cervix-roi-segmentation-by-unet + https://github.com/WeidiXie/cell_counting_v2 + https://github.com/yandexdataschool/YSDA_deeplearning17/blob/master/Seminar6/Seminar%206%20-%20segmentation.ipynb - Cascaded-FCN + https://github.com/IBBM/Cascaded-FCN - Keras + https://github.com/jocicmarko/ultrasound-nerve-segmentation + https://github.com/EdwardTyantov/ultrasound-nerve-segmentation + https://github.com/intact-project/ild-cnn + https://github.com/scottykwok/cervix-roi-segmentation-by-unet + https://github.com/lishen/end2end-all-conv - Tensorflow + https://github.com/imatge-upc/liverseg-2017-nipsws + https://github.com/DLTK/DLTK/tree/master/examples/applications/MRBrainS13_tissue_segmentation - Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA) + https://github.com/ecobost/cnn4brca - Papers: + https://www2.warwick.ac.uk/fac/sci/dcs/people/research/csrkbb/tmi2016_ks.pdf + Sliding window approach - http://people.idsia.ch/~juergen/nips2012.pdf + https://github.com/albarqouni/Deep-Learning-for-Medical-Applications#segmentation - Data: - https://luna16.grand-challenge.org/ - https://camelyon16.grand-challenge.org/ - https://github.com/beamandrew/medical-data ## Satellite images segmentation + https://github.com/mshivaprakash/sat-seg-thesis + https://github.com/KGPML/Hyperspectral + https://github.com/lopuhin/kaggle-dstl + https://github.com/mitmul/ssai + https://github.com/mitmul/ssai-cnn + https://github.com/azavea/raster-vision + https://github.com/nshaud/DeepNetsForEO + https://github.com/trailbehind/DeepOSM + https://github.com/mapbox/robosat + https://github.com/datapink/robosat.pink - Data: + https://github.com/RSIA-LIESMARS-WHU/RSOD-Dataset- + SpaceNet[https://spacenetchallenge.github.io/] + https://github.com/chrieke/awesome-satellite-imagery-datasets ## Video segmentation + https://github.com/shelhamer/clockwork-fcn + https://github.com/JingchunCheng/Seg-with-SPN ## Autonomous driving + https://github.com/MarvinTeichmann/MultiNet + https://github.com/MarvinTeichmann/KittiSeg + https://github.com/vxy10/p5_VehicleDetection_Unet [Keras] + https://github.com/ndrplz/self-driving-car + https://github.com/mvirgo/MLND-Capstone + https://github.com/zhujun98/semantic_segmentation/tree/master/fcn8s_road + https://github.com/MaybeShewill-CV/lanenet-lane-detection ### Other ## Networks by framework (Older list) - Keras + https://github.com/gakarak/FCN_MSCOCO_Food_Segmentation + https://github.com/abbypa/NNProject_DeepMask - TensorFlow + https://github.com/warmspringwinds/tf-image-segmentation - Caffe + https://github.com/xiaolonw/nips14_loc_seg_testonly + https://github.com/naibaf7/caffe_neural_tool - torch + https://github.com/erogol/seg-torch + https://github.com/phillipi/pix2pix - MXNet + https://github.com/itijyou/ademxapp ## Papers and Code (Older list) - Simultaneous detection and segmentation + http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sds/ + https://github.com/bharath272/sds_eccv2014 - Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation + https://github.com/HyeonwooNoh/DecoupledNet - Learning to Propose Objects + http://vladlen.info/publications/learning-to-propose-objects/ + https://github.com/philkr/lpo - Nonparametric Scene Parsing via Label Transfer + http://people.csail.mit.edu/celiu/LabelTransfer/code.html - Other + https://github.com/cvjena/cn24 + http://lmb.informatik.uni-freiburg.de/resources/software.php + https://github.com/NVIDIA/DIGITS/tree/master/examples/semantic-segmentation + http://jamie.shotton.org/work/code.html + https://github.com/amueller/textonboost ## To look at + https://github.com/fchollet/keras/issues/6538 + https://github.com/warmspringwinds/tensorflow_notes + https://github.com/kjw0612/awesome-deep-vision#semantic-segmentation + https://github.com/desimone/segmentation-models + https://github.com/nightrome/really-awesome-semantic-segmentation + https://github.com/kjw0612/awesome-deep-vision#semantic-segmentation + http://www.it-caesar.com/list-of-contemporary-semantic-segmentation-datasets/ + https://github.com/MichaelXin/Awesome-Caffe#23-image-segmentation + https://github.com/warmspringwinds/pytorch-segmentation-detection + https://github.com/neuropoly/axondeepseg + https://github.com/petrochenko-pavel-a/segmentation_training_pipeline ## Blog posts, other: + https://handong1587.github.io/deep_learning/2015/10/09/segmentation.html + http://www.andrewjanowczyk.com/efficient-pixel-wise-deep-learning-on-large-images/ + https://devblogs.nvidia.com/parallelforall/image-segmentation-using-digits-5/ + https://github.com/NVIDIA/DIGITS/tree/master/examples/binary-segmentation + https://github.com/NVIDIA/DIGITS/tree/master/examples/semantic-segmentation + http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review + https://medium.com/@barvinograd1/instance-embedding-instance-segmentation-without-proposals-31946a7c53e1