# TSGCNet **Repository Path**: ai-models-cn/TSGCNet ## Basic Information - **Project Name**: TSGCNet - **Description**: No description available - **Primary Language**: Python - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-07-16 - **Last Updated**: 2024-08-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Two-Stream Graph Convolutional Network for Intra-Oral Scanner Image Segmentation ## Prequisites * python 3.7.4 * pytorch 1.4.0 * numpy 1.19.0 * plyfile 0.7.1 ## Introduction This work is the pytorch implementation of **TSGCN**, which has been published in IEEE Transactions on Medical Imaging (https://ieeexplore.ieee.org/abstract/document/9594785/) and CVPR 2021 (https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_TSGCNet_Discriminative_Geometric_Feature_Learning_With_Two-Stream_Graph_Convolutional_Network_CVPR_2021_paper.html). # ## Usage To train the TSGCN, please put the trainning data and testing data into data/train and data/test, respectively. Then, you can start to train a TSGCN model by following command. ```shell python train.py ``` # ## Citation If you find our work useful in your research, please cite: * Y. Zhao et al., "Two-Stream Graph Convolutional Network for Intra-Oral Scanner Image Segmentation," in IEEE Transactions on Medical Imaging, vol. 41, no. 4, pp. 826-835, April 2022, doi: 10.1109/TMI.2021.3124217. * Zhang L, Zhao Y, Meng D, et al. TSGCNet: Discriminative Geometric Feature Learning with Two-Stream Graph Convolutional Network for 3D Dental Model Segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 6699-6708.