# segmentation_models.pytorch **Repository Path**: ai-models-cn/segmentation_models.pytorch ## Basic Information - **Project Name**: segmentation_models.pytorch - **Description**: No description available - **Primary Language**: Python - **License**: MIT - **Default Branch**: bifpn - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-10-24 - **Last Updated**: 2024-10-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Segmentation models [![Build Status](https://travis-ci.com/qubvel/segmentation_models.pytorch.svg?branch=master)](https://travis-ci.com/qubvel/segmentation_models.pytorch) [![Generic badge](https://img.shields.io/badge/License-MIT-.svg)](https://shields.io/) Segmentation models is python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: - High level API (just two lines to create neural network) - 4 models architectures for binary and multi class segmentation (including legendary Unet) - 45 available encoders for each architecture - All encoders have pre-trained weights for faster and better convergence ### Table of content 1. [Quick start](#start) 2. [Examples](#examples) 3. [Models](#models) 1. [Architectures](#architectires) 2. [Encoders](#encoders) 4. [Models API](#api) 1. [Input channels](#input-channels) 2. [Auxiliary classification output](#auxiliary-classification-output) 3. [Depth](#depth) 5. [Installation](#installation) 6. [Competitions won with the library](#competitions-won-with-the-library) 7. [License](#license) 8. [Contributing](#contributing) ### Quick start Since the library is built on the PyTorch framework, created segmentation model is just a PyTorch nn.Module, which can be created as easy as: ```python import segmentation_models_pytorch as smp model = smp.Unet() ``` Depending on the task, you can change the network architecture by choosing backbones with fewer or more parameters and use pretrainded weights to initialize it: ```python model = smp.Unet('resnet34', encoder_weights='imagenet') ``` Change number of output classes in the model: ```python model = smp.Unet('resnet34', classes=3, activation='softmax') ``` All models have pretrained encoders, so you have to prepare your data the same way as during weights pretraining: ```python from segmentation_models_pytorch.encoders import get_preprocessing_fn preprocess_input = get_preprocessing_fn('resnet18', pretrained='imagenet') ``` ### Examples - Training model for cars segmentation on CamVid dataset [here](https://github.com/qubvel/segmentation_models.pytorch/blob/master/examples/cars%20segmentation%20(camvid).ipynb). - Training SMP model with [Catalyst](https://github.com/catalyst-team/catalyst) (high-level framework for PyTorch), [Ttach](https://github.com/qubvel/ttach) (TTA library for PyTorch) and [Albumentations](https://github.com/albu/albumentations) (fast image augmentation library) - [here](https://github.com/catalyst-team/catalyst/blob/master/examples/notebooks/segmentation-tutorial.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catalyst-team/catalyst/blob/master/examples/notebooks/segmentation-tutorial.ipynb) ### Models #### Architectures - [Unet](https://arxiv.org/abs/1505.04597) - [Linknet](https://arxiv.org/abs/1707.03718) - [FPN](http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf) - [PSPNet](https://arxiv.org/abs/1612.01105) #### Encoders |Encoder |Weights |Params, M | |--------------------------------|:------------------------------:|:------------------------------:| |resnet18 |imagenet |11M | |resnet34 |imagenet |21M | |resnet50 |imagenet |23M | |resnet101 |imagenet |42M | |resnet152 |imagenet |58M | |resnext50_32x4d |imagenet |22M | |resnext101_32x8d |imagenet
instagram |86M | |resnext101_32x16d |instagram |191M | |resnext101_32x32d |instagram |466M | |resnext101_32x48d |instagram |826M | |dpn68 |imagenet |11M | |dpn68b |imagenet+5k |11M | |dpn92 |imagenet+5k |34M | |dpn98 |imagenet |58M | |dpn107 |imagenet+5k |84M | |dpn131 |imagenet |76M | |vgg11 |imagenet |9M | |vgg11_bn |imagenet |9M | |vgg13 |imagenet |9M | |vgg13_bn |imagenet |9M | |vgg16 |imagenet |14M | |vgg16_bn |imagenet |14M | |vgg19 |imagenet |20M | |vgg19_bn |imagenet |20M | |senet154 |imagenet |113M | |se_resnet50 |imagenet |26M | |se_resnet101 |imagenet |47M | |se_resnet152 |imagenet |64M | |se_resnext50_32x4d |imagenet |25M | |se_resnext101_32x4d |imagenet |46M | |densenet121 |imagenet |6M | |densenet169 |imagenet |12M | |densenet201 |imagenet |18M | |densenet161 |imagenet |26M | |inceptionresnetv2 |imagenet
imagenet+background |54M | |inceptionv4 |imagenet
imagenet+background |41M | |efficientnet-b0 |imagenet |4M | |efficientnet-b1 |imagenet |6M | |efficientnet-b2 |imagenet |7M | |efficientnet-b3 |imagenet |10M | |efficientnet-b4 |imagenet |17M | |efficientnet-b5 |imagenet |28M | |efficientnet-b6 |imagenet |40M | |efficientnet-b7 |imagenet |63M | |mobilenet_v2 |imagenet |2M | ### Models API - `model.encoder` - pretrained backbone to extract features of different spatial resolution - `model.decoder` - depends on models architecture (`Unet`/`Linknet`/`PSPNet`/`FPN`) - `model.segmentation_head` - last block to produce required number of mask channels (include also optional upsampling and activation) - `model.classification_head` - optional block which create classification head on top of encoder - `model.forward(x)` - sequentially pass `x` through model\`s encoder, decoder and segmentation head (and classification head if specified) ##### Input channels Input channels parameter allow you to create models, which process tensors with arbitrary number of channels. If you use pretrained weights from imagenet - weights of first convolution will be reused for 1- or 2- channels inputs, for input channels > 4 weights of first convolution will be initialized randomly. ```python model = smp.FPN('resnet34', in_channels=1) mask = model(torch.ones([1, 1, 64, 64])) ``` ##### Auxiliary classification output All models support `aux_params` parameters, which is default set to `None`. If `aux_params = None` than classification auxiliary output is not created, else model produce not only `mask`, but also `label` output with shape `NC`. Classification head consist of GlobalPooling->Dropout(optional)->Linear->Activation(optional) layers, which can be configured by `aux_params` as follows: ```python aux_params=dict( pooling='avg', # one of 'avg', 'max' dropout=0.5, # dropout ratio, default is None activation='sigmoid', # activation function, default is None classes=4, # define number of output labels ) model = smp.Unet('resnet34', classes=4, aux_params=aux_params) mask, label = model(x) ``` ##### Depth Depth parameter specify a number of downsampling operations in encoder, so you can make your model lighted if specify smaller `depth`. ```python model = smp.FPN('resnet34', depth=4) ``` ### Installation PyPI version: ```bash $ pip install segmentation-models-pytorch ```` Latest version from source: ```bash $ pip install git+https://github.com/qubvel/segmentation_models.pytorch ```` ### Competitions won with the library `Segmentation Models` package is widely used in the image segmentation competitions. [Here](https://github.com/qubvel/segmentation_models.pytorch/blob/master/HALLOFFAME.md) you can find competitions, names of the winners and links to their solutions. ### License Project is distributed under [MIT License](https://github.com/qubvel/segmentation_models.pytorch/blob/master/LICENSE) ### Contributing ##### Run test ```bash $ docker build -f docker/Dockerfile.dev -t smp:dev . && docker run --rm smp:dev pytest -p no:cacheprovider ``` ##### Generate table ```bash $ docker build -f docker/Dockerfile.dev -t smp:dev . && docker run --rm smp:dev python misc/generate_table.py ```