# CNN_for_SLR **Repository Path**: aixuexi0078/CNN_for_SLR ## Basic Information - **Project Name**: CNN_for_SLR - **Description**: A trained Convolutional Neural Network implemented on ZedBoard Zynq-7000 FPGA. - **Primary Language**: Unknown - **License**: BSD-2-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-01-11 - **Last Updated**: 2024-05-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # CNN_for_SLR A trained Convolutional Neural Network implemented on ZedBoard Zynq-7000 FPGA. Link to YouTube Video(s): https://www.youtube.com/watch?v=xoB--RFfy6I&feature=youtu.be Project name: BeeBoard Date: 30-Jul_2018 Version of uploaded archive: 1 University name: ISTANBUL TECHICAL UNIVERSITY Supervisor name: Berna Ors Yalcin Supervisor e-mail: Siddika.ors@itu.edu.tr Participant(s): Ilayda Yaman https://www.linkedin.com/in/ilayda-yaman-9bba0ab1/ M. Tarik Tamyurek Burak M. Gonultas https://www.linkedin.com/in/burak-mert-gonultas-94b045b1/ Email: ilaydayaman@gmail.com mttamyurek@gmail.com gonul004 [at] umn.edu Board used: Digilent ZedBoard Zynq®-7000 ARM/FPGA SoC Development Board Vivado Version: 2018.1 Brief description of project: A trained Convolutional Neural Network has been implemented on an FPGA evaluation board, ZedBoard Zynq-7000 FPGA, focused on fingerspelling recognition. Description of archive (explain directory structure, documents and source files): CNN folder includes Vivado files MATLAB_Code folder includes files to verify the results obtained by the Vivado- Behavioral Synthesis Instructions to build and test project Step 1: Go to CNN folder for Vivado files of the project Step 2: Run Behavioral Synthesis Step 3: Obtain results for the hardware design Step 4: Compare it with MATLAB results by running the "CNN.m" file inside the MATLAB_Code folder