2 Star 1 Fork 0

算法与编程之美/ai-edu

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
Apache-2.0

微软人工智能教育与学习共建社区

本社区是微软亚洲研究院(Microsoft Research Asia,简称MSRA)人工智能教育团队创立的人工智能教育与学习共建社区.

在教育部指导下,依托于新一代人工智能开放科研教育平台,微软亚洲研究院研发团队和学术合作部将为本社区提供全面支持。我们将在此提供人工智能应用开发的真实案例,以及配套的教程、工具等学习资源,人工智能领域的一线教师及学习者也将分享他们的资源与经验。

正如微软的使命“予力全球每一人、每一组织,成就不凡”所指出的,期待借由本社区的建立,能以开源的方式,与广大师生、开发者一起学习、一起贡献,共同丰富、完善本社区,既而为中国人工智能的发展添砖加瓦。

本社区注明版权出处的内容适用于License版权许可。

新闻

2020-03-25:

社区结构更新啦!模块调整并重新命名,结构更清晰!

神经网络基本原理简明教程 移入 A-基础教程 模块。该模块下还有 数学基础Python语言导论。教程更集中,学习更方便!

实践案例全部汇集在 B-实践案例 模块,并配上案例概览帮助文档,更有针对性学习案例!

E-课程集锦 模块汇集了微软及多所高校开源人工智能教学大纲及课件。欢迎感兴趣的朋友前往查看!

2019-11-20:

首页改版啦!新版本的首页,将社区资源进一步系统化,按认识AI(初级),理解AI(中级),研究AI(高级)的结构分级编写了学习路径,并给出学习时长参考,先修知识资源参考,循序渐进,旨在帮助广大学习者更最高效地学习AI,赶快学起来吧!

2019-11-19:

更新智能对联案例,案例更加简洁、清晰,方便上手!

2019-11-15:

神经网络基本原理简明教程9步学习神经网络全部内容完成!

学习资源介绍

介绍:

本社区的学习资源优质且免费,绝大部分为原创内容,核心学习资源包括实战篇理论篇两大部分,辅以参考学习路径和先修知识参考资源,让广大学习者可以清晰地选择适合自己的学习路径,高效地学习。

1. 实战篇

以“做中学“的理念为核心,从人工智能真实的应用场景与案例出发,先讲生动的案例,配合详实的实际操作说明,然后在动手实现场景的基础上,逐步引入人工智能学习中的相关理论知识,以递进学习的新颖方式层层剖析人工智能开发的主流场景,让大家在不需要大量时间学习庞大的理论基础的情况下,也可以真正动手开始进行人工智能应用的开发,提高实际动手的能力.

点此进入详细内容

2. 理论篇

理论篇的内容又称作“9步学习神经网络”,为微软亚洲研究院研发团队原创内容,着重讲述偏理论的知识,同样以“做中学”为核心概念,但是独特地以化繁为简,深入浅出为特点,提供通俗易懂的理论讲解,清晰工整的代码,准确无误的内容,完整的作业体系,不但有理论,还有大量实践动手环节,帮助读者不但迅速掌握“深度学习”的基础知识,更好地理解并使用现有框架,而且可以助力读者快速学习最新出现的各种神经网络的扩展或者变型,跟上快速发展的AI浪潮,使学习者从新的角度快速上手神经网络的学习,做到真正的从入门到精通。该部分内容在针对合作伙伴线下的培训中,受到广大学习者的广泛好评。

点此进入详细内容

AI 前沿精选

大规模利用单语数据提升神经机器翻译

基于层次化注意力图网络和多视角学习的商品推荐

AI换脸鉴别率超99.6%,微软用技术应对虚假信息

微软亚洲研究院精选论文解读

查看更多...

等你来战


访问旧版主页 (Version 1.0)

访问旧版主页 (Version 2.0)

# 仔细阅读以下声明: # Tutorial Materials: For Tutorial Materials marked with Microsoft copyright notice, following license applies: Microsoft Terms of Use Copyright © Microsoft Corporation. All rights reserved. Permission to use Tutorial Materials is granted, provided that (1) the below copyright notice appears in all copies of Tutorial Materials and that both the copyright notice and this permission notice appear, (2) use of such Tutorial Materials is for non-commercial or personal use only without monetization. Use for any other purpose is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum extent possible. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY OF THE INFORMATION CONTAINED IN THE TUTORIAL MATERIALS AND RELATED GRAPHICS PUBLISHED FOR ANY PURPOSE. ALL SUCH TUTORIAL MATERIALS AND RELATED GRAPHICS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS HEREBY DISCLAIM ALL WARRANTIES AND CONDITIONS WITH REGARD TO THIS INFORMATION, INCLUDING ALL WARRANTIES AND CONDITIONS OF MERCHANTABILITY, WHETHER EXPRESS, IMPLIED OR STATUTORY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF INFORMATION AVAILABLE FROM THE SERVICES. THE TUTORIAL MATERIALS AND RELATED GRAPHICS PUBLISHED ON THE SERVICES COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED HEREIN AT ANY TIME. # Open Source Code - The script [mnist_extension.py](./B-教学案例与实践/B9-自构建-图像识别应用案例-手写算式计算器/微软-方案1/tensorflow_model/mnist_extension.py) is under [Apache 2.0 License](http://www.apache.org/licenses/LICENSE-2.0). Based on [Origin code](https://github.com/tensorflow/models/blob/f81bb397efe57cf8bfb4a195c1b3064997f3e3c2/tutorials/image/mnist/convolutional.py). - Except open source code listed above, other open source codes are under below MIT license: MIT License Copyright © Microsoft Corporation. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # Contributing This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com. When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA. This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments. # Third Party Contents This site may include third party contents that are licensed to you under their own terms Any third party contents. Even if such contents are governed by other agreements, the disclaimer, limitations on, and exclusions of damages also apply to the extent allowed by applicable law.

简介

AI education materials for Chinese students, teachers and IT professionals. 展开 收起
README
Apache-2.0
取消

发行版

暂无发行版

贡献者

全部

近期动态

不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/algo_coding/ai-edu.git
git@gitee.com:algo_coding/ai-edu.git
algo_coding
ai-edu
ai-edu
master

搜索帮助