# redfuser **Repository Path**: alibaba/redfuser ## Basic Information - **Project Name**: redfuser - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2026-01-24 - **Last Updated**: 2026-01-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # RedFuser [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](LICENSE) [![ASPLOS 2026](https://img.shields.io/badge/ASPLOS-2026-orange.svg)](https://asplos-conference.org/) This repository contains the artifact for our ASPLOS 2026 paper: **"RedFuser: An Automatic Operator Fusion Framework for Cascaded Reductions on AI Accelerators"**. ## Overview RedFuser is a novel framework for optimizing cascaded reductions in deep learning compilers. Built on top of [Apache TVM](https://github.com/apache/tvm), RedFuser introduces a series of compiler transformation passes that enable efficient fusion of reduction operations with other computations, particularly targeting modern GPU architectures. ## Update - \[2026-01\]: RedFuser is now avaliable with flash-attention example. - \[2025-11\]: πŸŽ‰RedFuser is accepted by ASPLOS 2026! ## Roadmap - [x] flash-attention - [ ] flash-decoding - [ ] moe-routing - [ ] fp8 quant+gemm ## Getting Started Please follow https://tvm.apache.org/docs/install/index.html to install. ## Example For flash-attention example, see [`python/tvm/redfuser/example/flash_attention.py`](python/tvm/redfuser/example/flash_attention.py). ## Structure ``` redfuser/ β”œβ”€β”€ python/tvm/redfuser/ # RedFuser Python implementation β”‚ β”œβ”€β”€ transform/ # Core transformation passes β”‚ └── example/ # Example workloads β”‚ ... ``` ## License RedFuser is licensed under the [Apache License 2.0](LICENSE). ## Acknowledgments This project builds upon [Apache TVM](https://github.com/apache/tvm). We thank the TVM community for their excellent infrastructure and support.