# math_seq2tree **Repository Path**: allenlyu/math_seq2tree ## Basic Information - **Project Name**: math_seq2tree - **Description**: A Goal-Driven Tree-Structured Neural Model for Math Word Problems - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-04 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # A Goal-Driven Tree-Structured Neural Model for Math Word Problems This repository is the [PyTorch](http://pytorch.org/) implementation for the IJCAI 2019 accepted paper: > Zhipeng Xie* and Shichao Sun*, > [A Goal-Driven Tree-Structured Neural Model for Math Word Problems](https://www.ijcai.org/proceedings/2019/0736.pdf) > IJCAI 2019. \* indicates equal contribution. ## Seq2Tree Model A Seq2Tree Neural Network containing top-down Recursive Neural Network and bottom-up Recursive Neural Network ## Requirements - python 3 - [PyTorch](http://pytorch.org/) 0.4.1 ## Train and Test - Math23K: ``` python3 run_seq2tree.py ``` ## Results | Model | Accuracy | |--------|--------| |Hybrid model w/ SNI | 64.7% | |Ensemble model w/ EN | 68.4% | |Seq2Tree w/o Bottom-up RvNN | 70.0% | |Seq2Tree| **74.3%** | ## Citation @inproceedings{ijcai2019-736, title = {A Goal-Driven Tree-Structured Neural Model for Math Word Problems}, author = {Xie, Zhipeng and Sun, Shichao}, booktitle = {Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, {IJCAI-19}}, publisher = {International Joint Conferences on Artificial Intelligence Organization}, pages = {5299--5305}, year = {2019}, month = {7}, doi = {10.24963/ijcai.2019/736}, url = {https://doi.org/10.24963/ijcai.2019/736}, }