# transconductance_cc **Repository Path**: alphagw/transconductance_cc ## Basic Information - **Project Name**: transconductance_cc - **Description**: 跨到性能机器学习预测模型 - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2024-06-20 - **Last Updated**: 2024-09-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Transconductance_cc ### Introduction Transconductance value of MxAyO(P)z. Developed based on [ALKEMIE](https://alkemie.cloud) and [MatterAI](https://alkemie.cloud). Developed by [Guanjie Wang](https://alkemine.cn/gjwang) and Team of ChenChen ### Install pip install matfleet>=0.0.9 pip install transconductance_cc ### README #### 1. 新建输入数据文件名为:check.xlsx **输入数据文件说明:** - 前7列为特征列 - 最后一列tc为跨到性能 | mN | mMeltT | mColumn | mCovaR | mNsVal | mNpVal | A | tc | |----------|---------|----------|---------|--------|--------|-----------|---------| | 0.47561 | 0.401537| 0.555556 | 0.437018| 1 | 0 | 0.043478 | 1.62108 | | 0.695122 | 0.396557| 0.055556 | 0.8509 | 0.66667| 0 | 0.304348 | 1.57259 | | 0.317073 | 0.461314| 0.383333 | 0.488432| 1 | 0 | 0.130435 | 1.61811 | | 0.195122 | 0.316117| 0.777778 | 0.329049| 1 | 0.2 | 0.826087 | 1.57593 | | 0.139024 | 0.359159| 0.888889 | 0.318766| 1 | 0.6 | 0.130435 | 1.59 | | 0.097561 | 0.205437| 0.555556 | 0.372751| 1 | 0.2 | 0.130185 | 1.5 | | 0.26829 | 0.551783| 0.611111 | 0.352185| 1 | 0.2 | 0.304348 | 1.62 | | 0.304878 | 0.473139| 0.277778 | 0.51928 | 1 | 0 | 0.130835 | 1.68425 | | 0.097561 | 0.205437| 0.555556 | 0.372751| 1 | 0.2 | 0.217391 | 1.48 | | 0.012195 | 1 | 0.611111 | 0.141388| 1 | 0.4 | 0.003478 | 1.46 | | 0.097561 | 0.205437| 0.555556 | 0.372751| 1 | 0.2 | 0.086957 | 1.48 | | 0.097561 | 0.307601| 0.27778 | 0.398158| 1 | 0.2 | 0.130135 | 1.45 | | 0.420732 | 0.330424| 0.805556 | 0.357326| 1 | 0.6 | 0.130435 | 1.5278 | | 0.317073 | 0.032046| 0.555556 | 0.377892| 1 | 0.2 | 0.043478 | 1.46426 | #### 2. 运行一下命令进行跨到性能模型测试: ``` # 运行以下命令,进行3次测试,获得测试精度 tctest check.xlsx -b 3 # 运行以下命令,进行5次测试,获得测试精度,并返回模型预测值 tctest check.xlsx -b 5 -d 1 ``` #### Developers [Guanjie Wang](https://alkemine.cn/gjwang), gjwang@buaa.edu.cn