# 3D-BoNet **Repository Path**: alvin520/Code_3DBoNet ## Basic Information - **Project Name**: 3D-BoNet - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-02-16 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni. [arXiv:1906.01140](https://arxiv.org/abs/1906.01140), 2019. ### (1) Setup ubuntu 16.04 + cuda 8.0 python 2.7 or 3.6 tensorflow 1.2 or 1.4 scipy 1.3 h5py 2.9 open3d-python 0.3.0 #### Compile tf_ops (1) To find tensorflow include path and library paths: import tensorflow as tf print(tf.sysconfig.get_include()) print(tf.sysconfig.get_lib()) (2) To change the path in all the complie files, e.g. tf_ops/sampling/tf_sampling_compile.sh, and then compile: cd tf_ops/sampling chmod +x tf_sampling_compile.sh ./tf_sampling_compile.sh ### (2) Data S3DIS: [https://drive.google.com/open?id=1hOsoOqOWKSZIgAZLu2JmOb_U8zdR04v0](https://drive.google.com/open?id=1hOsoOqOWKSZIgAZLu2JmOb_U8zdR04v0) 百度盘: [https://pan.baidu.com/s/1ww_Fs2D9h7_bA2HfNIa2ig](https://pan.baidu.com/s/1ww_Fs2D9h7_bA2HfNIa2ig) 密码:qpt7 Acknowledgement: we use the same data released by [JSIS3D](https://github.com/pqhieu/jsis3d). ### (3) Train/test python main_train.py python main_eval.py ### (4) Quantitative Results on ScanNet  ### (5) Qualitative Results on ScanNet  |  |  | | ---------------------------------------- | -------------------------------------- | |  |  | #### More results of ScanNet validation split are available at: [More ScanNet Results](https://drive.google.com/file/d/1cV07rP02Yi3Eu6GQxMR2buigNPJEvCq0/view?usp=sharing) To visualize: python helper_data_scannet.py ### (6) Qualitative Results on S3DIS |  |  | | --------------------------------------------- | ----------------------------------------- |  ### (7) Training Curves on S3DIS  ### (8) Video Demo (Youtube)