# PEN-Net-for-Inpainting **Repository Path**: anckak/PEN-Net-for-Inpainting ## Basic Information - **Project Name**: PEN-Net-for-Inpainting - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-12-25 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # PEN-Net for Image Inpainting ![PEN-Net](https://github.com/researchmm/PEN-Net-for-Inpainting/blob/master/docs/PEN-Net.gif?raw=true) ### [Arxiv](https://arxiv.org/abs/1904.07475) | Learning Pyramid-Context Encoder Network for High-Quality Image Inpainting.
[Yanhong Zeng](), [Jianlong Fu](https://jianlong-fu.github.io/), [Hongyang Chao](), and [Baining Guo]().
In CVPR 2019 (Poster). ## Usage ``` # tensorflow version, when L=7 import tensorflow as tf from layers.atnconv import AtnConv cnum = 32 x = conv2d(input, cnum//2, ksize=3, stride=1) # encode enc_feats = [] dims = [cnum * i for i in [1, 2, 4, 8, 8, 8]] for i in range(len(dims)): enc_feats.append(x) x = conv2d(x, dims[i], ksize=3, stride=2) latent_feat = x # attention transfer networks attn_feats = [] x = latent_feat for i in range(len(dims)): x = AtnConv(enc_feats[-(i+1)], x, mask) attn_feats.append(x) # decode x = latent_feat dims = [cnum * i for i in [1./2, 1, 2, 4, 8, 8]] for i in range(len(dims)): x = deconv2d(x, dims[-(i+1)], ksize=3, stride=2) x = tf.concat([x, attn_feats[i]], axis=3) output = conv2d(x, 3, ksize=1, stride=1) ``` ### Citation If any part of our paper and code is helpful to your work, please generously cite with: ``` @inproceedings{yan2019PENnet, author = {Zeng, Yanhong and Fu, Jianlong and Chao, Hongyang and Guo, Baining}, title = {Learning Pyramid-Context Encoder Network for High-Quality Image Inpainting}, booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2019} } ``` ### License Licensed under an MIT license.