# vosh_saliency **Repository Path**: anjiang2020_admin/vosh_saliency ## Basic Information - **Project Name**: vosh_saliency - **Description**: 解决mask与xyzs维度不一致问题 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: mask_weights - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-03-08 - **Last Updated**: 2025-04-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Vosh This repository contains a PyTorch implementation of the paper: [Voxel-Mesh Hybrid Representation for Real-Time View Synthesis](https://arxiv.org/abs/2403.06505). ### [Project Page](https://zyyzyy06.github.io/Vosh/) | [Arxiv](https://arxiv.org/abs/2403.06505) | [Paper](https://ieeexplore.ieee.org/abstract/document/10759307) ![](assets/teaser.png) # Install ```bash git clone https://github.com/zachzhang07/vosh.git cd vosh ``` ### Install with pip ```bash conda create -n vosh python==3.8.13 conda activate vosh pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html pip install -r requirements.txt # nvdiffrast pip install git+https://github.com/NVlabs/nvdiffrast/ ``` ### Tested environments * Ubuntu 20.04 with torch 1.10.1 & CUDA 11.1 on RTX 4090 and RTX 3090. # Usage We majorly support COLMAP dataset like [Mip-NeRF 360](http://storage.googleapis.com/gresearch/refraw360/360_v2.zip). Please download and put them under `../data/`. For custom datasets: ```bash # prepare your video or images under /data/custom, and run colmap (assumed installed): python scripts/colmap2nerf.py --video ../data/custom/video.mp4 --run_colmap # if use video python scripts/colmap2nerf.py --images ../data/custom/images/ --run_colmap # if use images ``` ### Basics First time running will take some time to compile the CUDA extensions. ```bash ## train and eval # mip-nerf 360 python main_vol.py ../data/360_v2/bicycle/ --workspace ../output/bicycle --contract python main_mesh.py ../data/360_v2/bicycle/ --vol_path ../output/bicycle \ --workspace ../output/bicycle_mesh python main_vosh.py ../data/360_v2/bicycle/ --vol_path ../output/bicycle_mesh --workspace ../output/bicycle_base --lambda_mesh_weight 0.001 --mesh_select 0.9 --keep_center 0.25 --lambda_bg_weight 0.01 python main_vosh.py ../data/360_v2/bicycle/ --vol_path ../output/bicycle_mesh --workspace ../output/bicycle_light --lambda_mesh_weight 0.01 --mesh_select 1.0 --keep_center 0.25 --lambda_bg_weight 0.01 --use_mesh_occ_grid --mesh_check_ratio 8 python main_vosh_saliency.py ../data/360_v2/bicycle/ --vol_path ../output/bicycle_mesh --workspace ../output/bicycle_light --lambda_mesh_weight 0.01 --mesh_select 1.0 --saliency_select 0.5 --keep_center 0.25 --lambda_bg_weight 0.01 --use_mesh_occ_grid --mesh_check_ratio 8 ``` If you want to eval Vosh in 7 scenes of mip-nerf 360 dataset, just run: ```bash python full_eval_360.py ../data/360_v2/ --workspace ../output/ ``` Please check full_eval_360.py for different hyper-parameters of different kind of scenes, and check `main_*.py` for all options. ### Acknowledgement Heavily borrowed from [torch-merf](https://github.com/ashawkey/torch-merf) and [nerf2mesh](https://github.com/ashawkey/nerf2mesh). Many thanks to Jiaxiang. # Citation ``` @ARTICLE{10759307, author={Zhang, Chenhao and Zhou, Yongyang and Zhang, Lei}, journal={IEEE Transactions on Visualization and Computer Graphics}, title={Voxel-Mesh Hybrid Representation for Real-Time View Synthesis by Meshing Density Field}, year={2024}, volume={}, number={}, pages={1-13}, doi={10.1109/TVCG.2024.3502672}} ```