# CiSIN **Repository Path**: anruoran/CiSIN ## Basic Information - **Project Name**: CiSIN - **Description**: 将ReID技术用于视频人物关联与角色理解 Character Grounding and Re-Identification in Story of Videos and Text Descriptions 作者 | Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung, Gunhee Kim 单位 | 首尔大学;Ripple AI 论文 | https://www.ecva.net/papers/eccv_2020/ papers_ECCV/papers/123500528.pdf 代码 | https://github.com/yj-yu/CiSIN 备注 | ECCV 2020 Spotlight - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-10-02 - **Last Updated**: 2024-06-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Character in Story Identification Network (CiSIN) This project hosts the code for our paper. - [Youngjae Yu](https://yj-yu.github.io/home), Jongseok Kim, Heeseung Yun, Jiwan Chung and [Gunhee Kim](http://vision.snu.ac.kr/~gunhee/). Character Grounding and Re-Identification inStory of Videos and Text Descriptions. In *ECCV* (spotlight), 2020. This project is an Winning Solution in LSMDC 19 ["Fill-in the Characters"](https://sites.google.com/site/describingmovies/lsmdc-2019/challenge-details?authuser=0) task. For more information about the LSMDC visit the [Large Scale Movie Description Challenge (LSMDC) 2019](https://sites.google.com/site/describingmovies/lsmdc-2019) ## Reference If you use this code as part of any published research, please refer following paper, ```bibtex @inproceedings{yu:2020:ECCV, title="{Character Grounding and Re-Identification inStory of Videos and Text Descriptions}", author={Yu, Youngjae and Kim, Jongseok and Yun, Heeseung and Chung Jiwan and Kim, Gunhee}, booktitle={ECCV}, year=2020 } ``` ## System Requirements The following dependencies should be installed: - Python 3.6 - Pytorch 1.4.0 - torchvision 0.5.0 - CUDA 10.0 supported GPU with at least 12GB memory - see [requirements.txt](requirements.txt) for more details ## Data Setup Coming soon, ## Running Experiments ### Feature Extraction Coming soon, ### CiSIN To train our model, ```bash python train.py ``` Coming soon, ## Acknowledgement We thank SNUVL lab members for helpful comments. This research was supported by Seoul National University, Brain Research Program by National Research Foundation of Korea (NRF) (2017M3C7A1047860), and AIR Lab (AI Research Lab) in Hyundai Motor Company through HMC-SNU AI Consortium Fund. ## License [LICENSE.md](LICENSE.md).