# SAM3-DMS **Repository Path**: anshuai/SAM3-DMS ## Basic Information - **Project Name**: SAM3-DMS - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2026-01-30 - **Last Updated**: 2026-01-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
Ruiqi Shen1 · Chang Liu2✉️ · Henghui Ding1✉️
1Fudan University 2Shanghai University of Finance and Economics
https://github.com/user-attachments/assets/cd3dd821-1593-42ea-9f5e-020c0bdb2c51  TL;DR: Built upon SAM3, we focus on simultaneous multi-target video segmentation and propose a training-free decoupled memory selection strategy that shifts SAM3's group-level averaging to individual self-assessment, mitigating memory pollution and identity drift in complex scenarios. ## ⚙️ Installation ```bash # create new conda environment conda create -n sam3_decoupled python=3.12 conda deactivate conda activate sam3_decoupled # for pytorch/cuda dependencies pip install torch==2.7.0 torchvision --index-url https://download.pytorch.org/whl/cu126 # clone the repo & install packages git clone https://github.com/FudanCVL/SAM3_decoupled.git cd SAM3_decoupled pip install -e . ``` ## 📥 Getting checkpoints ⚠️ Please request access to the checkpoints on the SAM3 Hugging Face [repo](https://huggingface.co/facebook/sam3). Once accepted, you need to be authenticated to download the checkpoints. You can do this by running the following [steps](https://huggingface.co/docs/huggingface_hub/en/quick-start#authentication) (e.g. `hf auth login` after generating an access token.) Please organize the downloaded checkpoint as follows: ``` ├── sam3_ckpt/ │ ├── sam3.pt │ └── ... ``` ## 🚀 Training and Inference We follow the same training and inference pipeline as SAM3. For detailed instructions, please see [Evaluation](https://github.com/facebookresearch/sam3/tree/main/sam3/eval), and [Training](https://github.com/facebookresearch/sam3/blob/main/README_TRAIN.md). ## 🧪 Demo We provide additional streamlined script for interactive PCS. You can simply specify a video input (mp4 or jpg folder) and enter text prompts via the command line to generate results. ```bash python interactive_demo.py Enter video path: # input the video (either mp4 or jpg folder) Enter text prompt: # input the prompt ``` ## 📄 Citation If you find our work useful in your research, please consider citing: ```bibtex @article{shen2024sam3dms, title={SAM3-DMS: Decoupled Memory Selection for Multi-target Video Segmentation of SAM3}, author={Ruiqi Shen and Chang Liu and Henghui Ding}, year={2026}, journal={arXiv preprint arXiv:2601.09699}, } ```