# sftt **Repository Path**: arlionn/sftt ## Basic Information - **Project Name**: sftt - **Description**: Codes and data for `sftt` command. Lian Yujun, Chang Liu, Christopher F. Parmeter. Two-tier stochastic frontier analysis using Stata. **Stata Joural**, 2022, forthcoming. - **Primary Language**: Unknown - **License**: BSD-3-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 2 - **Created**: 2022-09-01 - **Last Updated**: 2024-02-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SFTT The repository of Stata command `sftt`. For details, see: > Lian, Y., Liu, C., & Parmeter, C. F. (2023). Two-tier stochastic frontier analysis using Stata. The Stata Journal, 23(1), 197–229. [link](https://journals.sagepub.com/doi/abs/10.1177/1536867X231162033), [-PDF-]( https://file.lianxh.cn/Refs/LianPub/Lian-2023-SJ-sftt-Two-tier-SFA.pdf) ## Description `sftt` fits two-tier stochastic frontier (**2TSF**) models with multiple model settings. The 2TSF model consists of a linear model with a disturbance that is assumed to be a mixture of three components: two measures of inefficiency which are strictly nonnegative and nonpositive respectively, and a two-sided error term from a symmetric distribution. `sftt` can fit 2TSF models with distributional assumption. When using distributional assumption mode, this command is applicable to estimate - models in **exponential/exponential/normal** specification following [Kumbhakar and Parmeter (2009)](https://doi.org/10.1007/s11123-008-0117-3) - models in **half-normal/half-normal/normal** specification following [Papadopoulos (2015)](https://doi.org/10.1007/s11123-014-0389-8). This command also fits - models with **scaling property** following [Parmeter (2018)](https://doi.org/10.1007/s11123-017-0520-8). ## The sftt commands - `sftt` estimates two-tier SF models listed above. - `sftt sigs` identifies the distribution of each component in the composite error term. - `sftt eff` decomposes the residual and generate measures of inefficiency. ## Install You can always type `search sftt` in Stata's command window to get access to package. Or, you can use the following commands to download it directly. ```stata net install st0705.pkg, replace net get st0705.pkg, replace // to get main.do file ``` Then you can read the help document to get more detailed information: ```stata help sftt ``` ## Example First add directory to end of ado-path. ``` adopath + "./src" ``` Load the data used in [Kumbhakar and Parmeter (2009)](https://doi.org/10.1007/s11123-008-0117-3) and replicate their results. ``` use "https://sftt.oss-cn-hangzhou.aliyuncs.com/kp09.dta", clear sftt lwage iq educ educ2 exper exper2 tenure tenure2 /// age married south urban black sibs brthord meduc feduc ``` Finally, you can use the post-estimation commands `sftt sigs` and `sftt eff` to assist your efficiency analysis. ``` sftt sigs sftt eff, replace ``` You can use `help sftt` to see more detailed instructions. ## Files - `./mc_results` stores the results generated by the Monte Carlo simulation using `scaling_mc.do`. - `./output` stores the results shown in Lian et al. (2022). - `./src` stores the source code of `sftt`. - `main.do` provides example of the applications of `sftt`, the results will be saved in `./output`. - `scaling_mc.do` implements the Monte-Carlo simulation following [Parmeter (2018)](https://doi.org/10.1007/s11123-017-0520-8), the results will be saved in `./mc_results`. ## References - Kumbhakar, S. C., and C. F. Parmeter. 2009. The effects of match uncertainty and bargaining on labor market outcomes: Evidence from firm and worker specific estimates. Journal of Productivity Analysis 31: 1–14. https://doi.org/10.1007/s11123-008-0117-3. - Papadopoulos, A. A. 2015. The half-normal specification for the two-tier stochastic frontier model. Journal of Productivity Analysis 43: 225–230. https://doi.org/10.1007/s11123-014-0389-8. - Parmeter, C. F. 2018. Estimation of the two-tiered stochastic frontier model with the scaling property. Journal of Productivity Analysis 49: 37–47. https://doi.org/10.1007/s11123-017-0520-8. ## Acknowledgments We thank Dr. Jenkins and the anonymous reviewer for their valuable and insightful comments. We also thank Alecos Papadopoulos for his helpful support. ## Authors - [Yujun Lian](mailto:arlionn@163.com) (repo owner). Lingnan College, Sun Yat-sen University. Guangzhou, China. [profile](https://lingnan.sysu.edu.cn/en/faculty/LianYujun), [blog](https://www.lianxh.cn) - [Chang Liu](mailto:liuch288@mail2.sysu.edu.cn). Lingnan College, Sun Yat-sen University Guangzhou, China. - [Christopher F. Parmeter](mailto:cparmeter@bus.miami.edu). Department of Economics, University of Miami Miami, FL, USA. [profile](https://people.miami.edu/profile/c.parmeter@miami.edu)