2 Star 2 Fork 5

连享会/statsmodels

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
BSD-3-Clause

Travis Build Status Appveyor Build Status Coveralls Coverage

About Statsmodels

Statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

http://www.statsmodels.org/stable/

The documentation for the development version is at

http://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

http://www.statsmodels.org/stable/release/version0.9.html

Backups of documentation are available at http://statsmodels.github.io/stable/ and http://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:
    • Ordinary least squares
    • Generalized least squares
    • Weighted least squares
    • Least squares with autoregressive errors
    • Quantile regression
    • Recursive least squares
  • Mixed Linear Model with mixed effects and variance components
  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions
  • Bayesian Mixed GLM for Binomial and Poisson
  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data
  • Discrete models:
    • Logit and Probit
    • Multinomial logit (MNLogit)
    • Poisson and Generalized Poisson regression
    • Negative Binomial regression
    • Zero-Inflated Count models
  • RLM: Robust linear models with support for several M-estimators.
  • Time Series Analysis: models for time series analysis
    • Complete StateSpace modeling framework
      • Seasonal ARIMA and ARIMAX models
      • VARMA and VARMAX models
      • Dynamic Factor models
      • Unobserved Component models
    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)
    • Univariate time series analysis: AR, ARIMA
    • Vector autoregressive models, VAR and structural VAR
    • Vector error correction modle, VECM
    • exponential smoothing, Holt-Winters
    • Hypothesis tests for time series: unit root, cointegration and others
    • Descriptive statistics and process models for time series analysis
  • Survival analysis:
    • Proportional hazards regression (Cox models)
    • Survivor function estimation (Kaplan-Meier)
    • Cumulative incidence function estimation
  • Multivariate:
    • Principal Component Analysis with missing data
    • Factor Analysis with rotation
    • MANOVA
    • Canonical Correlation
  • Nonparametric statistics: Univariate and multivariate kernel density estimators
  • Datasets: Datasets used for examples and in testing
  • Statistics: a wide range of statistical tests
    • diagnostics and specification tests
    • goodness-of-fit and normality tests
    • functions for multiple testing
    • various additional statistical tests
  • Imputation with MICE, regression on order statistic and Gaussian imputation
  • Mediation analysis
  • Graphics includes plot functions for visual analysis of data and model results
  • I/O
    • Tools for reading Stata .dta files, but pandas has a more recent version
    • Table output to ascii, latex, and html
  • Miscellaneous models
  • Sandbox: statsmodels contains a sandbox folder with code in various stages of developement and testing which is not considered "production ready". This covers among others
    • Generalized method of moments (GMM) estimators
    • Kernel regression
    • Various extensions to scipy.stats.distributions
    • Panel data models
    • Information theoretic measures

How to get it

The master branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

http://pypi.python.org/pypi/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Installing from sources

See INSTALL.txt for requirements or see the documentation

http://statsmodels.github.io/dev/install.html

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on our mailing list.

http://groups.google.com/group/pystatsmodels

We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues
Copyright (C) 2006, Jonathan E. Taylor All rights reserved. Copyright (c) 2006-2008 Scipy Developers. All rights reserved. Copyright (c) 2009-2012 Statsmodels Developers. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: a. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. b. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. c. Neither the name of Statsmodels nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL STATSMODELS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

简介

Statsmodels: statistical modeling and econometrics in Python 展开 收起
Python
BSD-3-Clause
取消

发行版

暂无发行版

贡献者

全部

近期动态

加载更多
不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/arlionn/statsmodels.git
git@gitee.com:arlionn/statsmodels.git
arlionn
statsmodels
statsmodels
master

搜索帮助