# R3Det_Tensorflow
**Repository Path**: atari/R3Det_Tensorflow
## Basic Information
- **Project Name**: R3Det_Tensorflow
- **Description**: 同步 https://github.com/Thinklab-SJTU/R3Det_Tensorflow
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2020-08-31
- **Last Updated**: 2020-12-19
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object
## Abstract
[R3Det](https://arxiv.org/abs/1908.05612) and [R3Det++](https://arxiv.org/abs/2004.13316) are based on [Focal Loss for Dense Object Detection](https://arxiv.org/pdf/1708.02002.pdf), and it is completed by [YangXue](https://yangxue0827.github.io/).
Techniques:
- [x] [ResNet](https://arxiv.org/abs/1512.03385), [MobileNetV2](https://arxiv.org/abs/1801.04381), [EfficientNet](https://arxiv.org/abs/1905.11946)
- [x] [RetinaNet-H, RetinaNet-R](https://arxiv.org/abs/1908.05612)
- [x] [R3Det: Feature Refinement Module (FRM)](https://arxiv.org/abs/1908.05612)
- [x] [R3Det++: Instance Level Denoising (InLD)](https://arxiv.org/abs/2004.13316)
- [x] [IoU-Smooth L1 Loss](https://arxiv.org/abs/1811.07126)
- [x] [Circular Smooth Label (CSL)](https://arxiv.org/abs/2003.05597)
- [x] [mmdetection version](https://github.com/SJTU-Thinklab-Det/r3det-on-mmdetection) is released
- [x] Dataset support: DOTA, HRSC2016, ICDAR2015, ICDAR2017 MLT, UCAS-AOD, FDDB, OHD-SJTU
- [x] [OHDet: Object Heading Detection](https://github.com/SJTU-Thinklab-Det/OHDet_Tensorflow)
## Pipeline

## Latest Performance
### DOTA1.0 (Task1)
| Model | Backbone | Training data | Val data | mAP | Model Link | Anchor | Reg. Loss| Angle Range | lr schd | Data Augmentation | GPU | Image/GPU | Configs |
|:------------:|:------------:|:------------:|:---------:|:-----------:|:----------:|:-----------:|:-----------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|
| [R3Det](https://arxiv.org/abs/1908.05612) | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 70.27 | - | H + R | smooth L1 | 90 | 2x | × | 4X GeForce RTX 2080 Ti | 1 | [cfgs_res50_dota_r3det_v1.py](./libs/configs/DOTA1.0/r3det/cfgs_res50_dota_r3det_v1.py) |
| [R3Det*](https://arxiv.org/abs/1908.05612) | ResNet101_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 73.79 | - | H + R | iou-smooth L1 | 90 | 3x | √ | 4X GeForce RTX 2080 Ti | 1 | [cfgs_res101_dota_r3det_v19.py](./libs/configs/DOTA1.0/r3det/cfgs_res101_dota_r3det_v19.py) |
| [R3Det*](https://arxiv.org/abs/1908.05612) | ResNet152_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 74.54 | - | H + R | iou-smooth L1 | 90 | 3x | √ | 4X GeForce RTX 2080 Ti | 1 | [cfgs_res152_dota_r3det_v25.py](./libs/configs/DOTA1.0/r3det/cfgs_res152_dota_r3det_v25.py) |
| [R3Det](https://arxiv.org/abs/1908.05612) | ResNet152_v1d MS (+Flip) | DOTA1.0 trainval | DOTA1.0 test | 76.23 (+0.24) | - | H + R | iou-smooth L1 | 90 | 4x | √ | 3X GeForce RTX 2080 Ti | 1 | [cfgs_res152_dota_r3det_v3.py](./libs/configs/DOTA1.0/r3det/cfgs_res152_dota_r3det_v3.py) |
[R3Det*](https://arxiv.org/abs/1908.05612): R3Det with two refinement stages
**Due to the improvement of the code, the performance of this repo is gradually improving, so the experimental results in other configuration files are for reference only.**
### Visualization

## My Development Environment
**docker images: docker pull yangxue2docker/yx-tf-det:tensorflow1.13.1-cuda10-gpu-py3**
1、python3.5 (anaconda recommend)
2、cuda 10.0
3、[opencv(cv2)](https://pypi.org/project/opencv-python/)
4、[tfplot 0.2.0](https://github.com/wookayin/tensorflow-plot) (optional)
5、tensorflow-gpu 1.13
## Download Model
### Pretrain weights
1、Please download [resnet50_v1](http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz), [resnet101_v1](http://download.tensorflow.org/models/resnet_v1_101_2016_08_28.tar.gz), [resnet152_v1](http://download.tensorflow.org/models/resnet_v1_152_2016_08_28.tar.gz), [efficientnet](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet), [mobilenet_v2](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.0_224.tgz) pre-trained models on Imagenet, put it to data/pretrained_weights.
2、**(Recommend in this repo)** Or you can choose to use a better backbone (resnet_v1d), refer to [gluon2TF](https://github.com/yangJirui/gluon2TF).
* [Baidu Drive](https://pan.baidu.com/s/1GpqKg0dOaaWmwshvv1qWGg), password: 5ht9.
* [Google Drive](https://drive.google.com/drive/folders/1BM8ffn1WnsRRb5RcuAcyJAHX8NS2M1Gz?usp=sharing)
## Compile
```
cd $PATH_ROOT/libs/box_utils/cython_utils
python setup.py build_ext --inplace (or make)
cd $PATH_ROOT/libs/box_utils/
python setup.py build_ext --inplace
```
## Train
1、If you want to train your own data, please note:
```
(1) Modify parameters (such as CLASS_NUM, DATASET_NAME, VERSION, etc.) in $PATH_ROOT/libs/configs/cfgs.py
(2) Add category information in $PATH_ROOT/libs/label_name_dict/label_dict.py
(3) Add data_name to $PATH_ROOT/data/io/read_tfrecord_multi_gpu.py
```
2、Make tfrecord
For DOTA dataset:
```
cd $PATH_ROOT/data/io/DOTA
python data_crop.py
```
```
cd $PATH_ROOT/data/io/
python convert_data_to_tfrecord.py --VOC_dir='/PATH/TO/DOTA/'
--xml_dir='labeltxt'
--image_dir='images'
--save_name='train'
--img_format='.png'
--dataset='DOTA'
```
3、Multi-gpu train
```
cd $PATH_ROOT/tools
python multi_gpu_train_r3det.py
```
## Eval
```
cd $PATH_ROOT/tools
python test_dota_r3det.py --test_dir='/PATH/TO/IMAGES/'
--gpus=0,1,2,3,4,5,6,7
```
## Tensorboard
```
cd $PATH_ROOT/output/summary
tensorboard --logdir=.
```


## Citation
If this is useful for your research, please consider cite.
```
@article{yang2020arbitrary,
title={Arbitrary-Oriented Object Detection with Circular Smooth Label},
author={Yang, Xue and Yan, Junchi},
journal={European Conference on Computer Vision (ECCV)},
year={2020}
organization={Springer}
}
@article{yang2019r3det,
title={R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object},
author={Yang, Xue and Liu, Qingqing and Yan, Junchi and Li, Ang and Zhang, Zhiqiang and Yu, Gang},
journal={arXiv preprint arXiv:1908.05612},
year={2019}
}
@article{yang2020scrdet++,
title={SCRDet++: Detecting Small, Cluttered and Rotated Objects via Instance-Level Feature Denoising and Rotation Loss Smoothing},
author={Yang, Xue and Yan, Junchi and Yang, Xiaokang and Tang, Jin and Liao, Wenglong and He, Tao},
journal={arXiv preprint arXiv:2004.13316},
year={2020}
}
@inproceedings{yang2019scrdet,
title={SCRDet: Towards more robust detection for small, cluttered and rotated objects},
author={Yang, Xue and Yang, Jirui and Yan, Junchi and Zhang, Yue and Zhang, Tengfei and Guo, Zhi and Sun, Xian and Fu, Kun},
booktitle={Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
pages={8232--8241},
year={2019}
}
@inproceedings{xia2018dota,
title={DOTA: A large-scale dataset for object detection in aerial images},
author={Xia, Gui-Song and Bai, Xiang and Ding, Jian and Zhu, Zhen and Belongie, Serge and Luo, Jiebo and Datcu, Mihai and Pelillo, Marcello and Zhang, Liangpei},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
pages={3974--3983},
year={2018}
}
```
## Reference
1、https://github.com/endernewton/tf-faster-rcnn
2、https://github.com/zengarden/light_head_rcnn
3、https://github.com/tensorflow/models/tree/master/research/object_detection
4、https://github.com/fizyr/keras-retinanet