# PyTorch-2D-3D-UNet-Tutorial **Repository Path**: automlresearch/PyTorch-2D-3D-UNet-Tutorial ## Basic Information - **Project Name**: PyTorch-2D-3D-UNet-Tutorial - **Description**: PyTorch-2D-3D-UNet-Tutorial - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-09-13 - **Last Updated**: 2021-09-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # PyTorch-2D-3D-UNet-Tutorial This repository contains all files that were used for the blog series 'Creating and training a U-Net model with PyTorch for 2D & 3D semantic segmentation - A guide to semantic segmentation with PyTorch and the U-Net'. You can find the blog posts [here](https://johschmidt42.medium.com/). In [requirements.txt](requirements.txt) you'll find the packages for the conda environment that I used. This does not necessarily mean that these will work on your machine/computer (for example torch comes with a specific cuda version). I have updated the repo, e.g. the [transformations](transformations.py) and added a dataset example for a [3D dataset](Part5-3D-example.ipynb). There is also an [example](Part6-PL-example.ipynb) now that shows how you can use a segmentation model like the UNet (or any other segmentation model) in PyTorch Lightning in combination with a logger like [neptune.ai](https://neptune.ai/) for experiment tracking.