1 Star 36 Fork 17

百度开源/uid-generator

Create your Gitee Account
Explore and code with more than 13.5 million developers,Free private repositories !:)
Sign up
Clone or Download
contribute
Sync branch
Cancel
Notice: Creating folder will generate an empty file .keep, because not support in Git
Loading...
README
Apache-2.0

UidGenerator

In Chinese 中文版

UidGenerator is a Java implemented, Snowflake based unique ID generator. It works as a component, and allows users to override workId bits and initialization strategy. As a result, it is much more suitable for virtualization environment, such as docker. Besides these, it overcomes concurrency limitation of Snowflake algorithm by consuming future time; parallels UID produce and consume by caching UID with RingBuffer; eliminates CacheLine pseudo sharing, which comes from RingBuffer, via padding. And finally, it can offer over 6 million QPS per single instance.

Requires:Java8+, MySQL(Default implement as WorkerID assigner; If there are other implements, MySQL is not required)

Snowflake

Snowflake
** Snowflake algorithm:** An unique id consists of worker node, timestamp and sequence within that timestamp. Usually, it is a 64 bits number(long), and the default bits of that three fields are as follows:

  • sign(1bit)
    The highest bit is always 0.

  • delta seconds (28 bits)
    The next 28 bits, represents delta seconds since a customer epoch(2016-05-20). The maximum time will be 8.7 years.

  • worker id (22 bits)
    The next 22 bits, represents the worker node id, maximum value will be 4.2 million. UidGenerator uses a build-in database based worker id assigner when startup by default, and it will dispose previous work node id after reboot. Other strategy such like 'reuse' is coming soon.

  • sequence (13 bits)
    the last 13 bits, represents sequence within the one second, maximum is 8192 per second by default.

The parameters above can be configured in spring bean

CachedUidGenerator

RingBuffer is an array,each item of that array is called 'slot', every slot keeps a uid or a flag(Double RingBuffer). The size of RingBuffer is 2^n, where n is positive integer and equal or greater than bits of sequence. Assign bigger value to boostPower if you want to enlarge RingBuffer to improve throughput.

Tail & Cursor pointer
  • Tail Pointer

    Represents the latest produced UID. If it catches up with cursor, the ring buffer will be full, at that moment, no put operation should be allowed, you can specify a policy to handle it by assigning property rejectedPutBufferHandler.

  • Cursor Pointer

    Represents the latest already consumed UID. If cursor catches up with tail, the ring buffer will be empty, and any take operation will be rejected. you can also specify a policy to handle it by assigning property rejectedTakeBufferHandler.

RingBuffer

CachedUidGenerator used double RingBuffer,one RingBuffer for UID, another for status(if valid for take or put)

Array can improve performance of reading, due to the CUP cache mechanism. At the same time, it brought the side effect of 「False Sharing」, in order to solve it, cache line padding is applied.

FalseSharing

RingBuffer filling

  • Initialization padding During RingBuffer initializing,the entire RingBuffer will be filled.

  • In-time filling Whenever the percent of available UIDs is less than threshold paddingFactor, the fill task is triggered. You can reassign that threshold in Spring bean configuration.

  • Periodic filling Filling periodically in a scheduled thread. ThescheduleInterval can be reassigned in Spring bean configuration.

Quick Start

Here we have a demo with 4 steps to introduce how to integrate UidGenerator into Spring based projects.

Step 1: Install Java8, Maven, MySQL

If you have already installed maven, jdk8+ and Mysql or other DB which supported by Mybatis, just skip to next.
Download Java8, MySQL and Maven, and install jdk, mysql. For maven, extracting and setting MAVEN_HOME is enough.

Set JAVA_HOME & MAVEN_HOME

Here is a sample script to set JAVA_HOME and MAVEN_HOME

export MAVEN_HOME=/xxx/xxx/software/maven/apache-maven-3.3.9
export PATH=$MAVEN_HOME/bin:$PATH
JAVA_HOME="/Library/Java/JavaVirtualMachines/jdk1.8.0_91.jdk/Contents/Home";
export JAVA_HOME;

Step 2: Create table WORKER_NODE

Replace xxxxx with real database name, and run following script to create table,

DROP DATABASE IF EXISTS `xxxx`;
CREATE DATABASE `xxxx` ;
use `xxxx`;
DROP TABLE IF EXISTS WORKER_NODE;
CREATE TABLE WORKER_NODE
(
ID BIGINT NOT NULL AUTO_INCREMENT COMMENT 'auto increment id',
HOST_NAME VARCHAR(64) NOT NULL COMMENT 'host name',
PORT VARCHAR(64) NOT NULL COMMENT 'port',
TYPE INT NOT NULL COMMENT 'node type: ACTUAL or CONTAINER',
LAUNCH_DATE DATE NOT NULL COMMENT 'launch date',
MODIFIED TIMESTAMP NOT NULL COMMENT 'modified time',
CREATED TIMESTAMP NOT NULL COMMENT 'created time',
PRIMARY KEY(ID)
)
 COMMENT='DB WorkerID Assigner for UID Generator',ENGINE = INNODB;

Reset property of 'jdbc.url', 'jdbc.username' and 'jdbc.password' in mysql.properties.

Step 3: Spring configuration

DefaultUidGenerator

There are two implements of UidGenerator: DefaultUidGenerator, CachedUidGenerator.
For performance sensitive application, CachedUidGenerator is recommended.

<!-- DefaultUidGenerator -->
<bean id="defaultUidGenerator" class="com.baidu.fsg.uid.impl.DefaultUidGenerator" lazy-init="false">
    <property name="workerIdAssigner" ref="disposableWorkerIdAssigner"/>

    <!-- Specified bits & epoch as your demand. No specified the default value will be used -->
    <property name="timeBits" value="29"/>
    <property name="workerBits" value="21"/>
    <property name="seqBits" value="13"/>
    <property name="epochStr" value="2016-09-20"/>
</bean>
 
<!-- Disposable WorkerIdAssigner based on Database -->
<bean id="disposableWorkerIdAssigner" class="com.baidu.fsg.uid.worker.DisposableWorkerIdAssigner" />

CachedUidGenerator

Copy beans of CachedUidGenerator to 'test/resources/uid/cached-uid-spring.xml'.

<!-- CachedUidGenerator -->
<bean id="cachedUidGenerator" class="com.baidu.fsg.uid.impl.CachedUidGenerator">
    <property name="workerIdAssigner" ref="disposableWorkerIdAssigner" />
 
    <!-- The config below is option -->
    <!-- Specified bits & epoch as your demand. No specified the default value will be used -->
    <property name="timeBits" value="29"/>
    <property name="workerBits" value="21"/>
    <property name="seqBits" value="13"/>
    <property name="epochStr" value="2016-09-20"/>
    <!-- RingBuffer size, to improve the throughput. -->
    <!-- Default as 3. Sample: original bufferSize=8192, after boosting the new bufferSize= 8192 << 3 = 65536 -->
    <property name="boostPower" value="3"></property>
 
    <!-- In-time padding, available UIDs percentage(0, 100) of the RingBuffer, default as 50 -->
    <!-- Sample: bufferSize=1024, paddingFactor=50 -> threshold=1024 * 50 / 100 = 512. -->
    <!-- When the rest available UIDs < 512, RingBiffer will be padded in-time -->
    <property name="paddingFactor" value="50"></property>
 
    <!-- Periodic padding -->
    <!-- Default is disabled. Enable as below, scheduleInterval unit as Seconds. -->
    <property name="scheduleInterval" value="60"></property>
 
    <!-- Policy for rejecting put on RingBuffer -->
    <property name="rejectedPutBufferHandler" ref="XxxxYourPutRejectPolicy"></property>
 
    <!-- Policy for rejecting take from RingBuffer -->
    <property name="rejectedTakeBufferHandler" ref="XxxxYourTakeRejectPolicy"></property>
 
</bean>
 
<!-- Disposable WorkerIdAssigner based on Database -->
<bean id="disposableWorkerIdAssigner" class="com.baidu.fsg.uid.worker.DisposableWorkerIdAssigner" />
 
<!-- Mybatis config... -->

Mybatis config

mybatis-spring.xml shows as below:

<!-- Spring annotation scan -->
<context:component-scan base-package="com.baidu.fsg.uid" />

<bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean">
    <property name="dataSource" ref="dataSource" />
    <property name="mapperLocations" value="classpath:/META-INF/mybatis/mapper/M_WORKER*.xml" />
</bean>

<!-- transaction -->
<tx:annotation-driven transaction-manager="transactionManager" order="1" />

<bean id="transactionManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
	<property name="dataSource" ref="dataSource" />
</bean>

<!-- Mybatis Mapper scan -->
<bean class="org.mybatis.spring.mapper.MapperScannerConfigurer">
	<property name="annotationClass" value="org.springframework.stereotype.Repository" />
	<property name="basePackage" value="com.baidu.fsg.uid.worker.dao" />
	<property name="sqlSessionFactoryBeanName" value="sqlSessionFactory" />
</bean>

<!-- datasource config -->
<bean id="dataSource" parent="abstractDataSource">
	<property name="driverClassName" value="${mysql.driver}" />
	<property name="maxActive" value="${jdbc.maxActive}" />
	<property name="url" value="${jdbc.url}" />
	<property name="username" value="${jdbc.username}" />
	<property name="password" value="${jdbc.password}" />
</bean>

<bean id="abstractDataSource" class="com.alibaba.druid.pool.DruidDataSource" destroy-method="close">
	<property name="filters" value="${datasource.filters}" />
	<property name="defaultAutoCommit" value="${datasource.defaultAutoCommit}" />
	<property name="initialSize" value="${datasource.initialSize}" />
	<property name="minIdle" value="${datasource.minIdle}" />
	<property name="maxWait" value="${datasource.maxWait}" />
	<property name="testWhileIdle" value="${datasource.testWhileIdle}" />
	<property name="testOnBorrow" value="${datasource.testOnBorrow}" />
	<property name="testOnReturn" value="${datasource.testOnReturn}" />
	<property name="validationQuery" value="${datasource.validationQuery}" />
	<property name="timeBetweenEvictionRunsMillis" value="${datasource.timeBetweenEvictionRunsMillis}" />
	<property name="minEvictableIdleTimeMillis" value="${datasource.minEvictableIdleTimeMillis}" />
	<property name="logAbandoned" value="${datasource.logAbandoned}" />
	<property name="removeAbandoned" value="${datasource.removeAbandoned}" />
	<property name="removeAbandonedTimeout" value="${datasource.removeAbandonedTimeout}" />
</bean>

<bean id="batchSqlSession" class="org.mybatis.spring.SqlSessionTemplate">
	<constructor-arg index="0" ref="sqlSessionFactory" />
	<constructor-arg index="1" value="BATCH" />
</bean>

Step 4: Run UnitTest

Run CachedUidGeneratorTest, shows how to generate / parse UniqueID:

@Resource
private UidGenerator uidGenerator;

@Test
public void testSerialGenerate() {
    // Generate UID
    long uid = uidGenerator.getUID();

    // Parse UID into [Timestamp, WorkerId, Sequence]
    // {"UID":"180363646902239241","parsed":{    "timestamp":"2017-01-19 12:15:46",    "workerId":"4",    "sequence":"9"        }}
    System.out.println(uidGenerator.parseUID(uid));

}

Tips

For low concurrency and long term application, less seqBits but more timeBits is recommended. For example, if DisposableWorkerIdAssigner is adopted and the average reboot frequency is 12 per node per day, with the configuration {"workerBits":23,"timeBits":31,"seqBits":9}, one project can run for 68 years with 28 nodes and entirely concurrency 14400 UID/s.

For frequent reboot and long term application, less seqBits but more timeBits and workerBits is recommended. For example, if DisposableWorkerIdAssigner is adopted and the average reboot frequency is 24 * 12 per node per day, with the configuration {"workerBits":27,"timeBits":30,"seqBits":6}, one project can run for 34 years with 37 nodes and entirely concurrency 2400 UID/s.

Experiment for Throughput

To figure out CachedUidGenerator's UID throughput, some experiments are carried out.
Firstly, workerBits is arbitrarily fixed to 20, and change timeBits from 25(about 1 year) to 32(about 136 years),

timeBits 25 26 27 28 29 30 31 32
throughput 6,831,465 7,007,279 6,679,625 6,499,205 6,534,971 7,617,440 6,186,930 6,364,997

throughput1

Then, timeBits is arbitrarily fixed to 31, and workerBits is changed from 20(about 1 million total reboots) to 29(about 500 million total reboots),

workerBits 20 21 22 23 24 25 26 27 28 29
throughput 6,186,930 6,642,727 6,581,661 6,462,726 6,774,609 6,414,906 6,806,266 6,223,617 6,438,055 6,435,549

throughput2

It is obvious that whatever the configuration is, CachedUidGenerator always has the ability to provide 6 million stable throughput, what sacrificed is just life expectancy, this is very cool.

Finally, both timeBits and workerBits are fixed to 31 and 23 separately, and change the number of CachedUidGenerator consumer. Since our CPU only has 4 cores, [1, 8] is chosen.

consumers 1 2 3 4 5 6 7 8
throughput 6,462,726 6,542,259 6,077,717 6,377,958 7,002,410 6,599,113 7,360,934 6,490,969

throughput3

Copyright (c) 2017 Baidu, Inc. All Rights Reserved Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright (c) 2017 Baidu, Inc. All Rights Reserved Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

About

No description expand collapse
README
Apache-2.0
Cancel

Releases

No release

Contributors

All

Activities

can not load any more
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/baidu/uid-generator.git
git@gitee.com:baidu/uid-generator.git
baidu
uid-generator
uid-generator
master

Search