# cs2 **Repository Path**: baiwenchao/cs2 ## Basic Information - **Project Name**: cs2 - **Description**: Impl. for CS-EV equilibrium algo. under 2CSs case - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-12-09 - **Last Updated**: 2022-01-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # cs2 #### 介绍 Impl. for CS-EV equilibrium algo. under 2CSs case #### 公式备忘 * $\omega_{p}p_{1} + \omega_{d}d_{i1} + \frac{\omega_{q}}{N_{1}^{C}}(Q_{1} + f_{i1}) -\mu_{i1} = \omega_{p}p_{2} + \omega_{d}d_{i2} + \frac{\omega_{q}}{N_{2}^{C}}(Q_{2} + f_{i2}) -\mu_{i2} = \lambda_{i}$ * $$ \begin{cases} \omega_{p}p_{1} + \omega_{q}(\frac{1}{N_{1}^{C}}+\frac{1}{N_{2}^{C}})Q_{1}^{*} \le T_{i} - \frac{\omega_{q}}{N_{1}^{C}} & f_{i1}^{*}=1 & iff \quad u_{i} \in \mathcal{I} \\ \omega_{p}p_{1} + \omega_{q}(\frac{1}{N_{1}^{C}}+\frac{1}{N_{2}^{C}})Q_{1}^{*} = T_{i} + \frac{\omega_{q}}{N_{2}^{C}} - \omega_{q}(\frac{1}{N_{1}^{C}}+\frac{1}{N_{2}^{C}})f_{i1}^{*} & f_{i1}^{*}\in(0,1) & iff \quad u_{i} \in \mathcal{J} \\ \omega_{p}p_{1} + \omega_{q}(\frac{1}{N_{1}^{C}}+\frac{1}{N_{2}^{C}})Q_{1}^{*} \ge T_{i} + \frac{\omega_{q}}{N_{2}^{C}} & f_{i1}^{*}=0 & iff \quad u_{i} \in \mathcal{K} \\ \end{cases} $$ * $T_{i} = \omega_{p}p_{2} + \frac{\omega_{q}}{N_{2}^{C}}|U| + w_{d}(d_{i2}-d_{i1})$ * $T^{k} = \sum_{u_{i}\in\mathcal{J}^{k}}(T_{i}+\frac{w_{q}}{N_{2}^{C}})$ * $Q_{1}^{*} = \frac{-\omega_{p}|\mathcal{J}|}{w_{q}(\frac{1}{N_{1}^{C}} + \frac{1}{N_{2}^{C}})(|\mathcal{J}|+1)}p_{1} + \frac{\sum_{u_{i}\in\mathcal{J}}(T_{i} + \frac{\omega_{q}}{N_{2}^{C}}) + w_{q}(\frac{1}{N_{1}^{C}} + \frac{1}{N_{2}^{C}})|\mathcal{I}|}{w_{q}(\frac{1}{N_{1}^{C}} + \frac{1}{N_{2}^{C}})(|\mathcal{J}|+1)}$ * $g(x) = \omega_{p}x + \omega_{q}(\frac{1}{N_{1}^{C}}+\frac{1}{N_{2}^{C}})Q_{1}^{*}(x) = \frac{\omega_{p}}{|\mathcal{J}|+1}x + \frac{\sum_{u_{i}\in\mathcal{J}}(T_{i} + \frac{\omega_{q}}{N_{2}^{C}}) + w_{q}(\frac{1}{N_{1}^{C}} + \frac{1}{N_{2}^{C}})|\mathcal{I}|}{|\mathcal{J}|+1}$ * $p_{1}^{k} = \frac{1}{w_{p}}[(|\mathcal{J}^{k}|+1)b_{1}^{k} - T^{k} - w_{q}(\frac{1}{N_{1}^{C}}+\frac{1}{N_{2}^{C}})|\mathcal{I}^{k}|]$ * $Case1: b_{1}^{k}=T_{l}-\frac{w_q}{N_{1}^{C}}$ * $Q_{1}^{k+1}(p_{1}^{k}) = \frac{-\omega_{p}(|\mathcal{J}|^{k}+x)}{w_{q}(\frac{1}{N_{1}^{C}} + \frac{1}{N_{2}^{C}})(|\mathcal{J}|^{k}+x+1)}p_{1}^{k} + \frac{T^{k} + xb_{1}^{k} + w_{q}(\frac{1}{N_{1}^{C}} + \frac{1}{N_{2}^{C}})|\mathcal{I}|^{k}}{w_{q}(\frac{1}{N_{1}^{C}} + \frac{1}{N_{2}^{C}})(|\mathcal{J}|^{k}+x+1)}$ * $Case2: b_{1}^{k}=T_{l}+\frac{w_q}{N_{2}^{C}}$ * $Q_{1}^{k+1}(p_{1}^{k}) = \frac{-\omega_{p}(|\mathcal{J}|^{k}-x)}{w_{q}(\frac{1}{N_{1}^{C}} + \frac{1}{N_{2}^{C}})(|\mathcal{J}|^{k}-x+1)}p_{1}^{k} + \frac{T^{k} - xb_{1}^{k} + w_{q}(\frac{1}{N_{1}^{C}} + \frac{1}{N_{2}^{C}})|\mathcal{I}|^{k}}{w_{q}(\frac{1}{N_{1}^{C}} + \frac{1}{N_{2}^{C}})(|\mathcal{J}|^{k}-x+1)}$