# MVSNet **Repository Path**: bakili/MVSNet ## Basic Information - **Project Name**: MVSNet - **Description**: MVSNet: Depth Inference for Unstructured Multi-view Stereo (ECCV2018, Oral Presentaion) - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-12 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MVSNet

|
|
:---------------------------------------:|:---------------------------------------:|:---------------------------------------:
reference image |depth map | probability map
### Post-Processing
MVSNet itself only produces per-view depth maps. To generate the 3D point cloud, we need to apply depth map filter/fusion for post-processing. As our implementation of this part is depended on the [Altizure](https://www.altizure.com/) internal library, currently we could not provide the corresponding code. Fortunately, depth map filter/fusion is a general step in MVS reconstruction, and there are similar implementations in other open-source MVS algorithms. We provide the script ``depthfusion.py`` to utilize [fusibile](https://github.com/kysucix/fusibile) for post-processing (thank Silvano Galliani for the excellent code!).
To run the post-processing:
* Check out the modified version fusibile ```git clone https://github.com/YoYo000/fusibile```
* Install fusibile by ```cmake .``` and ```make```, which will generate the executable at ``FUSIBILE_EXE_PATH``
* Run post-processing ``python depthfusion.py --dense_folder TEST_DATA_FOLDER --fusibile_exe_path FUSIBILE_EXE_PATH``
* The final point cloud is stored in `TEST_DATA_FOLDER/points_mvsnet/consistencyCheck-TIME/final3d_model.ply`.
We observe that the point cloud output of ``depthfusion.py`` is very similar to our own implementation. For detailed differences, please refer to [MVSNet paper](https://arxiv.org/abs/1804.02505) and [Galliani's paper](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Galliani_Massively_Parallel_Multiview_ICCV_2015_paper.pdf). The point cloud for `scan9` should look like:
|
:--------------------------------------------------:|:----------------------------------------------:
point cloud result |ground truth point cloud
## File Formats
Each project folder should contain the following
```
.
├── images
│ ├── 00000000.jpg
│ ├── 00000001.jpg
│ └── ...
├── cams
│ ├── 00000000_cam.txt
│ ├── 00000001_cam.txt
│ └── ...
└── pair.txt
```
If you want to apply MVSNet to your own data, please structure your data into such a folder.
### Image Files
All image files are stored in the `images` folder. We index each image using an 8 digit number starting from `00000000`. The following camera and output files use the same indexes as well.
### Camera Files
The camera parameter of one image is stored in a ``cam.txt`` file. The text file contains the camera extrinsic `E = [R|t]`, intrinsic `K` and the depth range:
```
extrinsic
E00 E01 E02 E03
E10 E11 E12 E13
E20 E21 E22 E23
E30 E31 E32 E33
intrinsic
K00 K01 K02
K10 K11 K12
K20 K21 K22
DEPTH_MIN DEPTH_INTERVAL
```
Note that the depth range and depth resolution are determined by the minimum depth `DEPTH_MIN`, the interval between two depth samples `DEPTH_INTERVAL`, and also the depth sample number (`max_d` in the training/testing scripts). The `max_d` is left in the scripts for users to flexibly control the depth range. We also left the `interval_scale` for controlling the depth resolution. The maximum depth is then computed as:
```
DEPTH_MAX = DEPTH_MIN + (interval_scale * DEPTH_INTERVAL) * (max_d - 1)
```
### View Selection File
We store the view selection result in the `pair.txt`. For each reference image, we calculate its view selection scores with each of the other views, and store the 10 best views in the pair.txt file:
```
TOTAL_IMAGE_NUM
IMAGE_ID0 # index of reference image 0
10 ID0 SCORE0 ID1 SCORE1 ... # 10 best source images for reference image 0
IMAGE_ID1 # index of reference image 1
10 ID0 SCORE0 ID1 SCORE1 ... # 10 best source images for reference image 1
...
```
### Output Format
The ``test.py`` script will create a `depths_mvsnet` folder to store the running results, including the depth maps, probability maps, scaled/cropped images and the corresponding cameras. The depth and probability maps are stored in `.pfm` format. We provide the python IO for pfm files in the `preprocess.py` script, and for the c++ IO, we refer users to the [Cimg](http://cimg.eu/) library. To inspect the pfm format results, you can simply type `python visualize.py .pfm`.