# SemiGlobalMatching **Repository Path**: bakili/SemiGlobalMatching ## Basic Information - **Project Name**: SemiGlobalMatching - **Description**: SGM,立体匹配最经典应用最广泛算法,4000+引用,兼顾效率和效果。完整实现,代码规范,注释清晰,博客教学,欢迎star! - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-04 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SemiGlobalMatching SGM,立体匹配最经典应用最广泛算法,4000+引用,兼顾效率和效果。完整实现,代码规范,注释清晰,博客教学,欢迎star!
# CSDN博客 [【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(1)框架与类设计](https://ethanli.blog.csdn.net/article/details/105065660)
[【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(2)代价计算](https://ethanli.blog.csdn.net/article/details/105142484)
[【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(3)代价聚合](https://ethanli.blog.csdn.net/article/details/105316274)
[【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(4)代价聚合2](https://ethanli.blog.csdn.net/article/details/105396761)
[【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(5)视差优化](https://blog.csdn.net/rs_lys/article/details/105715526)
[【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(6)视差填充](https://ethanli.blog.csdn.net/article/details/105897391)
[【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(7)弱纹理优化](https://ethanli.blog.csdn.net/article/details/106168040)
# 环境 windows10 / visual studio 2015&2019
代码基本没有使用系统api,你可以非常方便的移植到linux,可能需要做极少量的修改 # 第三方库 opencv310
百度网盘连接:https://pan.baidu.com/s/1_WD-KdPyDBazEIim7NU3jA
提取码:aab4

解压后放将名称为OpenCV的文件夹复制到到3rdparty文件夹下

若运行时提示缺少opencv_310(d).dll,则在OpenCV文件夹里找到对应的dll文件复制到程序exe所在的目录即可(Opencv\dll\opencv_310(d).dll),带d为debug库,不带d为release库。

为便于移植,算法是不依赖任何图像库的,只在算法实验部分调用opencv库读取和显示图像,也可替换成其他图像库 # 算法引导 SGM步骤图

SGM类设计图
## 备注 算法优点:效果好,效率高,且可高度并行
算法缺点:效果非SOTA、内存占用高(可优化)、对弱纹理、重复纹理支持不太好 ## 论文 1. Heiko Hirschmüller. Hirschmüller, H: Stereo processing by semiglobal matching and mutual information. IEEE PAMI 30(2), 328-341[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2):328-341. 2. Humenberger M , Engelke T , Kubinger W . A census-based stereo vision algorithm using modified Semi-Global Matching and plane fitting to improve matching quality[C]// IEEE Computer Society Conference on Computer Vision & Pattern Recognition-workshops. IEEE, 2010. ## 实验图
上行:左视图、右视图、初始代价结果、聚合代价结果
下行:一致性检查、唯一性约束+去小连通区、中值滤波、视差填充
## Github图片不显示的解决办法 修改hosts C:\Windows\System32\drivers\etc\hosts 在文件末尾添加: ``` cpp # GitHub Start 192.30.253.112 github.com 192.30.253.119 gist.github.com 151.101.184.133 assets-cdn.github.com 151.101.184.133 raw.githubusercontent.com 151.101.184.133 gist.githubusercontent.com 151.101.184.133 cloud.githubusercontent.com 151.101.184.133 camo.githubusercontent.com 151.101.184.133 avatars0.githubusercontent.com 151.101.184.133 avatars1.githubusercontent.com 151.101.184.133 avatars2.githubusercontent.com 151.101.184.133 avatars3.githubusercontent.com 151.101.184.133 avatars4.githubusercontent.com 151.101.184.133 avatars5.githubusercontent.com 151.101.184.133 avatars6.githubusercontent.com 151.101.184.133 avatars7.githubusercontent.com 151.101.184.133 avatars8.githubusercontent.com # GitHub End ```