# pytorchviz **Repository Path**: baozhiqiang1978/pytorchviz ## Basic Information - **Project Name**: pytorchviz - **Description**: A small package to create visualizations of PyTorch execution graphs - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-09-30 - **Last Updated**: 2021-09-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README PyTorchViz ======= A small package to create visualizations of PyTorch execution graphs and traces. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/szagoruyko/pytorchviz/blob/master/examples.ipynb) ## Installation Install graphviz, e.g.: ``` brew install graphviz ``` Install the package itself: ``` pip install torchviz ``` ## Usage Example usage of `make_dot`: ``` model = nn.Sequential() model.add_module('W0', nn.Linear(8, 16)) model.add_module('tanh', nn.Tanh()) model.add_module('W1', nn.Linear(16, 1)) x = torch.randn(1, 8) y = model(x) make_dot(y.mean(), params=dict(model.named_parameters())) ``` ![image](https://user-images.githubusercontent.com/13428986/110844921-ff3f7500-8277-11eb-912e-3ba03623fdf5.png) Set `show_attrs=True` and `show_saved=True` to see what autograd saves for the backward pass. (Note that this is only available for pytorch >= 1.9.) ``` model = nn.Sequential() model.add_module('W0', nn.Linear(8, 16)) model.add_module('tanh', nn.Tanh()) model.add_module('W1', nn.Linear(16, 1)) x = torch.randn(1, 8) y = model(x) make_dot(y.mean(), params=dict(model.named_parameters()), show_attrs=True, show_saved=True) ``` ![image](https://user-images.githubusercontent.com/13428986/110845186-4ded0f00-8278-11eb-88d2-cc33413bb261.png) ## Acknowledgements The script was moved from [functional-zoo](https://github.com/szagoruyko/functional-zoo) where it was created with the help of Adam Paszke, Soumith Chintala, Anton Osokin, and uses bits from [tensorboard-pytorch](https://github.com/lanpa/tensorboard-pytorch). Other contributors are [@willprice](https://github.com/willprice), [@soulitzer](https://github.com/soulitzer), [@albanD](https://github.com/albanD).