# Fire-Smoke-Dataset **Repository Path**: bear4zcx/Fire-Smoke-Dataset ## Basic Information - **Project Name**: Fire-Smoke-Dataset - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-21 - **Last Updated**: 2022-09-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Fire-Flame-Dataset ___ An image dataset for training fire and frame detection AI ___ Fire-Flame-Dataset is a dataset collected in order to train machine learning model to recognize Fire, smoke, and neutral(images without fire or smoke).This a dataset containing about 3000 images and 3 classes which include: * Fire * Smoke * neutral
There are 1000 images in each category and 900 for train and 100 for testing ### Download, Training and Prediction ___ The Fire-Flame-Dataset is provided for download in the release section of this repository. You can download the dataset via this link [Fire-Flame-Dataset](https://github.com/DeepQuestAI/Fire-Smoke-Dataset/releases/download/v1/FIRE-SMOKE-DATASET.zip). The implementation code in which the model was train with has been provide in this repository. The model was trained with train with resnet50 and a accuracy of 85% on the test data was achieved. The python codebase is contained in fire_flame.ipynb. Some of the prediction results are shown below:
![fire_1](./Assets/fire_1.jpg) > ('Image of:', 'Class: Fire', 'Confidence score: 1.0') ![fire_2](./Assets/fire_2.jpg) > ('Image of:', 'Class: Fire', 'Confidence score: 0.990234375') ![neutral_1](./Assets/neutral_1.jpg) > ('Image of:', 'Class: Neutral', 'Confidence score: 0.99365234375') ![neutral_2](./Assets/neutral_2.jpg) > ('Image of:', 'Class: Neutral', 'Confidence score: 1.0') ![smoke_1](./Assets/smoke_1.jpg) > ('Image of:', 'Class: Smoke', 'Confidence score: 0.4462890625') ![smoke_1](./Assets/smoke_2.jpg) > ('Image of:', 'Class: Smoke', 'Confidence score: 0.9970703125') ### Reqirements ___ * Python 3 * Pytorch * Numpy * Matplotlib * TorchFussion ### References ___ * [Kaiming H. et al, Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385 )