# labelme2coco
**Repository Path**: bear_happy/labelme2coco
## Basic Information
- **Project Name**: labelme2coco
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: GPL-3.0
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 1
- **Forks**: 1
- **Created**: 2022-01-23
- **Last Updated**: 2022-07-11
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
[](https://pepy.tech/project/labelme2coco)
[](https://badge.fury.io/py/labelme2coco)

labelme2coco
A lightweight package for converting your labelme annotations into COCO object detection format.
## Convert LabelMe annotations to COCO format in one step
[labelme](https://github.com/wkentaro/labelme) is a widely used is a graphical image annotation tool that supports classification, segmentation, instance segmentation and object detection formats.
However, widely used frameworks/models such as Yolact/Solo, Detectron, MMDetection etc. requires COCO formatted annotations.
You can use this package to convert labelme annotations to COCO format.
## Getting started
### Installation
```
pip install -U labelme2coco
```
### Basic Usage
```python
labelme2coco path/to/labelme/dir
```
```python
labelme2coco path/to/labelme/dir --train_split_rate 0.85
```
### Advanced Usage
```python
# import package
import labelme2coco
# set directory that contains labelme annotations and image files
labelme_folder = "tests/data/labelme_annot"
# set export dir
export_dir = "tests/data/"
# set train split rate
train_split_rate = 0.85
# convert labelme annotations to coco
labelme2coco.convert(labelme_folder, export_dir, train_split_rate)
```
```python
# import functions
from labelme2coco import get_coco_from_labelme_folder, save_json
# set labelme training data directory
labelme_train_folder = "tests/data/labelme_annot"
# set labelme validation data directory
labelme_val_folder = "tests/data/labelme_annot"
# set path for coco json to be saved
export_dir = "tests/data/"
# create train coco object
train_coco = get_coco_from_labelme_folder(labelme_train_folder)
# export train coco json
save_json(train_coco.json, export_dir+"train.json")
# create val coco object
val_coco = get_coco_from_labelme_folder(labelme_val_folder, coco_category_list=train_coco.json_categories)
# export val coco json
save_json(val_coco.json, export_dir+"val.json")
```