# labelme2coco **Repository Path**: bear_happy/labelme2coco ## Basic Information - **Project Name**: labelme2coco - **Description**: No description available - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 1 - **Created**: 2022-01-23 - **Last Updated**: 2022-07-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README [![Downloads](https://pepy.tech/badge/labelme2coco)](https://pepy.tech/project/labelme2coco) [![PyPI version](https://badge.fury.io/py/labelme2coco.svg)](https://badge.fury.io/py/labelme2coco) ![CI](https://github.com/fcakyon/labelme2coco/workflows/CI/badge.svg)

labelme2coco

A lightweight package for converting your labelme annotations into COCO object detection format.

teaser

## Convert LabelMe annotations to COCO format in one step [labelme](https://github.com/wkentaro/labelme) is a widely used is a graphical image annotation tool that supports classification, segmentation, instance segmentation and object detection formats. However, widely used frameworks/models such as Yolact/Solo, Detectron, MMDetection etc. requires COCO formatted annotations. You can use this package to convert labelme annotations to COCO format. ## Getting started ### Installation ``` pip install -U labelme2coco ``` ### Basic Usage ```python labelme2coco path/to/labelme/dir ``` ```python labelme2coco path/to/labelme/dir --train_split_rate 0.85 ``` ### Advanced Usage ```python # import package import labelme2coco # set directory that contains labelme annotations and image files labelme_folder = "tests/data/labelme_annot" # set export dir export_dir = "tests/data/" # set train split rate train_split_rate = 0.85 # convert labelme annotations to coco labelme2coco.convert(labelme_folder, export_dir, train_split_rate) ``` ```python # import functions from labelme2coco import get_coco_from_labelme_folder, save_json # set labelme training data directory labelme_train_folder = "tests/data/labelme_annot" # set labelme validation data directory labelme_val_folder = "tests/data/labelme_annot" # set path for coco json to be saved export_dir = "tests/data/" # create train coco object train_coco = get_coco_from_labelme_folder(labelme_train_folder) # export train coco json save_json(train_coco.json, export_dir+"train.json") # create val coco object val_coco = get_coco_from_labelme_folder(labelme_val_folder, coco_category_list=train_coco.json_categories) # export val coco json save_json(val_coco.json, export_dir+"val.json") ```