# BorderDet **Repository Path**: beijieer/BorderDet ## Basic Information - **Project Name**: BorderDet - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-04-30 - **Last Updated**: 2021-08-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # BorderDet This project provides an implementation for "BorderDet: Border Feature for Dense Object Detection" (*ECCV2020 Oral*) on PyTorch. For the reason that experiments in the paper were conducted using internal framework, this project reimplements them on cvpods and reports detailed comparisons below.
## Requirements * Python >= 3.6 * PyTorch >= 1.3 * torchvision >= 0.4.2 * OpenCV * pycocotools: pip install cython; pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI' * GCC >= 4.9 ## Get Started ```shell git clone --recursive https://github.com/Megvii-BaseDetection/BorderDet cd BorderDet # build cvpods (requires GPU) pip install -r requirements.txt python setup.py build develop # preprare data path mkdir datasets ln -s /path/to/your/coco/dataset datasets/coco cd playground/detection/coco/borderdet/borderdet.res50.fpn.coco.800size.1x # Train pods_train --num-gpus 8 # Test pods_test --num-gpus 8 \ MODEL.WEIGHTS /path/to/your/save_dir/ckpt.pth # optional OUTPUT_DIR /path/to/your/save_dir # optional # Multi node training ## sudo apt install net-tools ifconfig pods_train --num-gpus 8 --num-machines N --machine-rank 0/1/.../N-1 --dist-url "tcp://MASTER_IP:port" ``` ## Results on COCO For your convenience, we provide the performance of the following trained models. All models are trained with 16 images in a mini-batch and frozen batch normalization. All model including R_101/X_101/DCN_X_101 will be released soon. | Model | Multi-scale training | Multi-scale training | Testing time / im | AP (minival) | Link | |:---: |:--------------------:|:--------------------:|:-----------------:|:-------:|:---:| | [FCOS_R_50_FPN_1x](https://github.com/Megvii-BaseDetection/BorderDet/blob/master/playground/detection/coco/fcos/fcos.res50.fpn.coco.800size.1x) | No | No | 54ms | 38.7 | [Google](https://drive.google.com/file/d/1hcDobxvqolMwqj20BEAPikSMcz4NYZRx/view?usp=sharing) | [BD_R_50_FPN_1x](https://github.com/Megvii-BaseDetection/BorderDet/blob/master/playground/detection/coco/borderdet/borderdet.res50.fpn.coco.800size.1x) | No | No | 60ms | 41.4 | [Google](https://drive.google.com/file/d/1nhGA0TYtwGp_RMwPoZDAPbZ_TNL8-XCj/view?usp=sharing) ## Acknowledgement cvpods is developed based on Detectron2. For more details about official detectron2, please check [DETECTRON2](https://github.com/facebookresearch/detectron2/blob/master/README.md). ## Contributing to the project Any pull requests or issues are welcome.