# redis-demo **Repository Path**: bianpengfei/redis-demo ## Basic Information - **Project Name**: redis-demo - **Description**: 这是redis工程-demo,里面包含了 1、五个数据类型常用指令 2、配置文件解析 3、持久化原理(RDB/AOF) 4、事务 5、订阅与发布 6、主从复制 7、哨兵模式 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 5 - **Forks**: 2 - **Created**: 2019-02-26 - **Last Updated**: 2022-11-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # **Redis(**Remote Dictionary Server**)**远程字典服务器 # 1、简述 1、非关系型数据库(NoSQL):MongoDB、Redis、Hbase、Mencache 2、关系型数据库:Mysql、Oracle、SQLite、SqlServer 事务管理acid 3、NoSQL的聚合模型:1) .KV键值 2).Bson 3).列族 5).图形 4、NoSQL数据库的四大分类: - 1) KV键值: - 2) 文档类型的数据库(Bson较多): - 3) 列存数据库: - 4) 图关系数据库: - 5) 四者对比: 5、分布式数据库中的CAP原理:CAP+BASE 1) .传统的ACID分别是什么? ​ ①(Atomicity)原子性 ​ ②(Consistency)一致性 ​ ③(Isolation)隔离性 ​ ④(Duration)持久性 2) .CAP ①C:Consistency(强一致性) ​ ②A:Availability(高可用性) ​ ③P:Partition tolerance(分区容错性) 3) . CAP的3进2 ​ ①:CA: ​ ②:AP:绝大部分互联网的 ​ ③:CP:Redis MongoDB 4) BASE ​ BASE就是为了解决关系型数据库强一致性引起的问题而引起的可用性降低而提出的解决的方案。 ​ BASE其实就是下面的四个术语进行缩写的 ​ ①基本可用(Basically Available) ​ ②软状态(Soft state) ​ ③最终一致(Eventually consistent) 5) 分布式+集群简介 ​ a. 分布式:不同的多台服务器上面部署不同的服务模块(工程)。 ​ b. 集群式: 6、入门概述:三个特点: ​ 1) . Redis支持数据的持久化,可以将内存中的数据保存在磁盘的文件中,重启的时候可以再次加载进行使用。 ​ 2) Redis不仅支持简单的Key/Value,同时还提供了list、set、zset、hash等数据结构的支持。 ​ 3) Redis支持数据的备份,即master-slave模式的数据备份。 # 2、安装 步骤一:从官网下载 http://download.redis.io/releases/redis-5.0.3.tar.gz ![1551098104442](https://gitee.com/bianpengfei/redis-demo/raw/master/images/1551098104442.png) 步骤二: 通过xftp 来将我的window下载的redis安装包 ,传输给linux系统,这里我是放在/opt中 ![1551098245781](https://gitee.com/bianpengfei/redis-demo/raw/master/images/1551098245781.png) ![1551098366232](https://gitee.com/bianpengfei/redis-demo/raw/master/images/1551098366232.png) 步骤三: 这时候我们进入压缩包位置 操作命令 ~~~shell // 1、先进入压缩包路径 [root@bogon redis-5.0.3]# cd /opt ///2、解压redis压缩包 [root@bogon redis-5.0.3]# tar -zxvf redis-5.0.3.tar.gz // 3、进入redis解压缩文件夹中 [root@bogon redis-5.0.3]# cd /redis-5.0.3 // 4、后输入 make 检查 [root@bogon redis-5.0.3]# make // 5、如果出现gcc没有安装错误,自己可以去查看一下网上安装gcc教程 // 接着使用 make install 安装命令 [root@bogon redis-5.0.3]# make install cd src && make install make[1]: Entering directory `/opt/redis-5.0.3/src' CC Makefile.dep make[1]: Leaving directory `/opt/redis-5.0.3/src' make[1]: Entering directory `/opt/redis-5.0.3/src' Hint: It's a good idea to run 'make test' ;) INSTALL install INSTALL install INSTALL install INSTALL install INSTALL install make[1]: Leaving directory `/opt/redis-5.0.3/src' // 6、默认安装到的程序路径是在 /usr/local/bin [root@bogon usr]# ls /usr/local/bin/ redis-benchmark redis-check-rdb redis-sentinel redis-check-aof redis-cli redis-server // 7、为了安全性,我们需要拷贝redis.conf 复制到 /usr/local/bin [root@bogon redis-5.0.3]# cp redis.conf /usr/local/bin/myRedis.conf // 8、查看我的复制 myRedis.conf [root@bogon redis-5.0.3]# ll /usr/local/bin/ total 32720 -rw-r--r-- 1 root root 62155 Feb 25 07:48 myRedis.conf -rwxr-xr-x 1 root root 4365312 Feb 25 07:45 redis-benchmark -rwxr-xr-x 1 root root 8089526 Feb 25 07:45 redis-check-aof -rwxr-xr-x 1 root root 8089526 Feb 25 07:45 redis-check-rdb -rwxr-xr-x 1 root root 4800679 Feb 25 07:45 redis-cli lrwxrwxrwx 1 root root 12 Feb 25 07:45 redis-sentinel -> redis-server -rwxr-xr-x 1 root root 8089526 Feb 25 07:45 redis-server // 9、进入我的 复制的redis配置,使用命令 [root@bogon redis-5.0.3]# vim myRedis.conf ################################# GENERAL ##################################### # By default Redis does not run as a daemon. Use 'yes' if you need it. # Note that Redis will write a pid file in /var/run/redis.pid when daemonized. daemonize yes ===》(这个表示开启线程守护,表示可以在后台运行) // 10、开启我的redis服务 [root@bogon bin]# redis-server myRedis.conf 7757:C 25 Feb 2019 07:57:26.985 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo 7757:C 25 Feb 2019 07:57:26.985 # Redis version=5.0.3, bits=64, commit=00000000, modified=0, pid=7757, just started 7757:C 25 Feb 2019 07:57:26.985 # Configuration loaded [root@bogon bin]# redis-cli -p 6379 127.0.0.1:6379> ping pang "pang" // 11、查看redis端口 [root@bogon bin]# ps -ef|grep redis root 7758 1 0 07:57 ? 00:00:00 redis-server 127.0.0.1:6379 root 7781 3417 0 08:00 pts/0 00:00:00 grep --color=auto redis // 12、查看自己redis每秒请求 [root@bogon bin]# redis-benchmark ====== PING_INLINE ====== 100000 requests completed in 1.58 seconds 50 parallel clients 3 bytes payload keep alive: 1 90.89% <= 1 milliseconds 99.74% <= 2 milliseconds 99.88% <= 3 milliseconds 99.96% <= 4 milliseconds 99.98% <= 5 milliseconds 100.00% <= 6 milliseconds 100.00% <= 6 milliseconds 63371.36 requests per second ~~~ # 3、常见命令 (1) Select:切换数据库 (2) DBSize:查询当前的数据库中的key的个数 (3) FLUSHdb:清空当前库 (4) FlushAll:通杀全部库 (5) Redis的索引是从0开始 (6)keys *: 查询所有key # 4、五大数据类型(重要) ## 1、key (这个不是数据类型) - exist[key]: 判断key值是否存在 - move[key]:将key移动到哪个数据库中 - expire[key]: 设定key多少时间过期,默认是单位是秒; - ttl[key]: -1 表示永不过期,-2 表示已过期 - del[key]: 删除key - type[key]: key的数据类型 ## 2、String (字符串) string类型的redis最基本的数据类型,一个redis中的字符串value最多可以是==512==M - **set**/**get**/**append**/**del**/**strlen**: 设置/获取/添加/删除/获取string长度 - **incr**/**decr**/**incrby**/**decrby** : 自增长1/自减1/自己设定自增长数值/自己设定自减数值 - **getrange**/**setrange**: 截取字符串,类似于between  and 获取string中的截取字符段/设置string字符段特定索引值。 - **setnx**(set if not exist): 预判断是否已经存在的key值,如果不存在,添加新的value值,如果存在,不覆盖 - **setex**(set with expire): 键秒值 - **mset**/**mget**: 多设定string的值/多获取string的值 - **msetnx**: 多设定string值,但是它会提前判断是否已经存在的key值,如果有一个key或者一个以上有存在,name这个语句将执行失败,不起效 ##3、Hash(哈希) hash是String类型的field和value的映射表,hash特别适合用于存储对象 类似java中的Map - ==**hset**==/==**hget**==: 设置/获取 hash - ==**hmset**==/==**hmget**==: 多设置/多获取 hash - ==**hdel**==: 删除hash中字段 - ==**hgetall**==:获取所有的hash字段值 - ==**hlen**==:获取hash长度 - hexists: 判断hash中的字段值是否存在 - ==**hkeys**==/**==hvals==**: 获取hash中的所有的keys/values - hincrby/hincrbyfloat: 设置hash中的字段自增长/自减 - hsetnx: 获取预先判断hash中的字段是有字段,有的不起效,没有的就生效 ## 4、List(列表) 列表是简单的字符串列表,按照插入顺序排序,你可以添加一个元素主导列表头部(左边)或者是(右边) - **lpush**/**rpush**/**lrange**: 从最开始的位置插入(先进先出)/从最尾部的位置插入 (后进先出) /获取列表中指定索引位置之间的值 - **lpop**/**rpop**: 从最开始位置的即第一个位置出列/从最后一个位置出列 - **llen**: 列表长度 - **lindex**: 获取索引值 - **lrem**: 删除N个value的值(是从0开始往后面计数) - **ltrim**: (开始index结束index),截取指定的范围的值后在赋值给key - **lset** 【key】【 index】 【 value】: 按照指定的索引给其设置 - **rpoplpush** 【source】【 destination】: 将source列表的出栈并且将出栈的值添加到destination的最初位置 - **linsert** 【key】【before/after】 【值1】 【值2】: 意思是将值2插入到 列表key 中的值1的前面/后面 ## 5、Set(集合); set是String类型的无序集合。它是通过HashTable实现的。不可重复 - **sadd** [key] : 添加set集合 - **smembers**: 查看set集合中所有的值 - **sismember**: 查看是否是set集合中的值 - **scard**: 查看set集合中的个数 - **srem** key value: 删除集合中的元素 - **srandmember** [key]. [count] : 随机出count个元素 - **spop** key count:随机出栈count个元素 - **smove** source destination member: 将集合source中的member移到集合destinatio中 - 数学集合类 - 差集: **sdiff** - 交集: **sinter** - 并集: **sunion** ##6、Zset(Sorted Set有序集合) 这个和Set不同的是: ​ **sorted set中的每一个元素都会关联一个double类型的分数** ​ redis正是通过分数为集合中的成员进行从小到大的排序。**zset的成员是唯一的,但是分数(score)确可以重复。** - **zadd** key score member: 添加key、 - **zrange** key : 获取key值(根据分数从小到大顺序) - **zrange** key start stop [withscores]: 获取key值的并带有分数score (根据分数从小到大顺序) - **zrangebyscore** key min max : 表示获取key中的分数在min和max之间的value值 - **zrangebyscore** key min (max: (表示不包含 - **zrangebyscore** key min max limit offset count:limit和mysql分页一个意思 - **zrem** key member: 删除成员 - **zcard** key: 查询个数 - **zcount** key min max:查询key在min和max之间的个数 - zrank key member: 按照从小到大的分数顺序排序,显示member在zset中的排序位置 从0 开始 - zrevrange key: 获取key值(根据分数从大到小顺序) - zrevrange key withscores: 获取key值并带有分数score (根据分数从大到小顺序) # 5、redis的配置文件 ~~~properties # redis 配置文件示例 # 当你需要为某个配置项指定内存大小的时候,必须要带上单位, # 通常的格式就是 1k 5gb 4m 等酱紫: # # 1k => 1000 bytes # 1kb => 1024 bytes # 1m => 1000000 bytes # 1mb => 1024*1024 bytes # 1g => 1000000000 bytes # 1gb => 1024*1024*1024 bytes # # 单位是不区分大小写的,你写 1K 5GB 4M 也行 ################################## INCLUDES ################################### # 假如说你有一个可用于所有的 redis server 的标准配置模板, # 但针对某些 server 又需要一些个性化的设置, # 你可以使用 include 来包含一些其他的配置文件,这对你来说是非常有用的。 # # 但是要注意哦,include 是不能被 config rewrite 命令改写的 # 由于 redis 总是以最后的加工线作为一个配置指令值,所以你最好是把 include 放在这个文件的最前面, # 以避免在运行时覆盖配置的改变,相反,你就把它放在后面(外国人真啰嗦)。 # # include /path/to/local.conf # include /path/to/other.conf ################################ 常用 ##################################### # 默认情况下 redis 不是作为守护进程运行的,如果你想让它在后台运行,你就把它改成 yes。 # 当redis作为守护进程运行的时候,它会写一个 pid 到 /var/run/redis.pid 文件里面。 daemonize no # 当redis作为守护进程运行的时候,它会把 pid 默认写到 /var/run/redis.pid 文件里面, # 但是你可以在这里自己制定它的文件位置。 pidfile /var/run/redis.pid # 监听端口号,默认为 6379,如果你设为 0 ,redis 将不在 socket 上监听任何客户端连接。 port 6379 # TCP 监听的最大容纳数量 # # 在高并发的环境下,你需要把这个值调高以避免客户端连接缓慢的问题。TCP三次握手 # Linux 内核会一声不响的把这个值缩小成 /proc/sys/net/core/somaxconn 对应的值, # 所以你要修改这两个值才能达到你的预期。 tcp-backlog 511 # 默认情况下,redis 在 server 上所有有效的网络接口上监听客户端连接。 # 你如果只想让它在一个网络接口上监听,那你就绑定一个IP或者多个IP。 # # 示例,多个IP用空格隔开: # # bind 192.168.1.100 10.0.0.1 # bind 127.0.0.1 # 指定 unix socket 的路径。 # # unixsocket /tmp/redis.sock # unixsocketperm 755 # 指定在一个 client 空闲多少秒之后关闭连接(0 就是不管它) timeout 0 # tcp 心跳包。 # # 如果设置为非零,则在与客户端缺乏通讯的时候使用 SO_KEEPALIVE 发送 tcp acks 给客户端。 # 这个之所有有用,主要由两个原因: # # 1) 防止死的 peers # 2) Take the connection alive from the point of view of network # equipment in the middle. # # On Linux, the specified value (in seconds) is the period used to send ACKs. # Note that to close the connection the double of the time is needed. # On other kernels the period depends on the kernel configuration. # # A reasonable value for this option is 60 seconds. # 推荐一个合理的值就是60秒 # 就是检查是否客户端时否给数据连接 tcp-keepalive 0 # 定义日志级别。 # 可以是下面的这些值: # debug (适用于开发或测试阶段) # verbose (many rarely useful info, but not a mess like the debug level) # notice (适用于生产环境) # warning (仅仅一些重要的消息被记录) loglevel notice # 指定日志文件的位置 logfile "" # 要想把日志记录到系统日志,就把它改成 yes, # 也可以可选择性的更新其他的syslog 参数以达到你的要求 # syslog-enabled no # 设置 syslog 的 identity # 指定系统日志标志 # syslog-ident redis # 设置 syslog 的 facility,必须是 USER 或者是 LOCAL0-LOCAL7 之间的值。 # syslog-facility local0 # 设置数据库的数目。 # 默认数据库是 DB 0,你可以在每个连接上使用 select 命令选择一个不同的数据库, # 但是 dbid 必须是一个介于 0 到 databasees - 1 之间的值 databases 16 ################################ 快照 ################################ # # 存 DB 到磁盘: # # 格式:save <间隔时间(秒)> <写入次数> # # 根据给定的时间间隔和写入次数将数据保存到磁盘 # # 下面的例子的意思是: # 900 秒内如果至少有 1 个 key 的值变化,则保存 # 300 秒内如果至少有 10 个 key 的值变化,则保存 # 60 秒内如果至少有 10000 个 key 的值变化,则保存 #   # 注意:你可以注释掉所有的 save 行来停用保存功能。 # 也可以直接一个空字符串来实现停用: # save "" save 900 1 save 300 10 save 60 10000 # 默认情况下,如果 redis 最后一次的后台保存失败,redis 将停止接受写操作, # 这样以一种强硬的方式让用户知道数据不能正确的持久化到磁盘, # 否则就会没人注意到灾难的发生。 # # 如果后台保存进程重新启动工作了,redis 也将自动的允许写操作。 # # 然而你要是安装了靠谱的监控,你可能不希望 redis 这样做,那你就改成 no 好了。 stop-writes-on-bgsave-error yes # 是否在 dump .rdb 数据库的时候使用 LZF 压缩字符串 # 默认都设为 yes # 如果你希望保存子进程节省点 cpu ,你就设置它为 no , # 不过这个数据集可能就会比较大 rdbcompression yes # 是否校验rdb文件 rdbchecksum yes # 设置 dump 的文件位置 dbfilename dump.rdb # 工作目录 # 例如上面的 dbfilename 只指定了文件名, # 但是它会写入到这个目录下。这个配置项一定是个目录,而不能是文件名。 dir ./ ################################# 主从复制 ################################# # 主从复制。使用 slaveof 来让一个 redis 实例成为另一个reids 实例的副本。 # 注意这个只需要在 slave 上配置。 # # slaveof # 如果 master 需要密码认证,就在这里设置 # masterauth # 当一个 slave 与 master 失去联系,或者复制正在进行的时候, # slave 可能会有两种表现: # # 1) 如果为 yes ,slave 仍然会应答客户端请求,但返回的数据可能是过时, # 或者数据可能是空的在第一次同步的时候 # # 2) 如果为 no ,在你执行除了 info he salveof 之外的其他命令时, # slave 都将返回一个 "SYNC with master in progress" 的错误, # slave-serve-stale-data yes # 你可以配置一个 slave 实体是否接受写入操作。 # 通过写入操作来存储一些短暂的数据对于一个 slave 实例来说可能是有用的, # 因为相对从 master 重新同步数而言,据数据写入到 slave 会更容易被删除。 # 但是如果客户端因为一个错误的配置写入,也可能会导致一些问题。 # # 从 redis 2.6 版起,默认 slaves 都是只读的。 # # Note: read only slaves are not designed to be exposed to untrusted clients # on the internet. It's just a protection layer against misuse of the instance. # Still a read only slave exports by default all the administrative commands # such as CONFIG, DEBUG, and so forth. To a limited extent you can improve # security of read only slaves using 'rename-command' to shadow all the # administrative / dangerous commands. # 注意:只读的 slaves 没有被设计成在 internet 上暴露给不受信任的客户端。 # 它仅仅是一个针对误用实例的一个保护层。 slave-read-only yes # Slaves 在一个预定义的时间间隔内发送 ping 命令到 server 。 # 你可以改变这个时间间隔。默认为 10 秒。 # # repl-ping-slave-period 10 # The following option sets the replication timeout for: # 设置主从复制过期时间 # # 1) Bulk transfer I/O during SYNC, from the point of view of slave. # 2) Master timeout from the point of view of slaves (data, pings). # 3) Slave timeout from the point of view of masters (REPLCONF ACK pings). # # It is important to make sure that this value is greater than the value # specified for repl-ping-slave-period otherwise a timeout will be detected # every time there is low traffic between the master and the slave. # 这个值一定要比 repl-ping-slave-period 大 # # repl-timeout 60 # Disable TCP_NODELAY on the slave socket after SYNC? # # If you select "yes" Redis will use a smaller number of TCP packets and # less bandwidth to send data to slaves. But this can add a delay for # the data to appear on the slave side, up to 40 milliseconds with # Linux kernels using a default configuration. # # If you select "no" the delay for data to appear on the slave side will # be reduced but more bandwidth will be used for replication. # # By default we optimize for low latency, but in very high traffic conditions # or when the master and slaves are many hops away, turning this to "yes" may # be a good idea. repl-disable-tcp-nodelay no # 设置主从复制容量大小。这个 backlog 是一个用来在 slaves 被断开连接时 # 存放 slave 数据的 buffer,所以当一个 slave 想要重新连接,通常不希望全部重新同步, # 只是部分同步就够了,仅仅传递 slave 在断开连接时丢失的这部分数据。 # # The biggest the replication backlog, the longer the time the slave can be # disconnected and later be able to perform a partial resynchronization. # 这个值越大,salve 可以断开连接的时间就越长。 # # The backlog is only allocated once there is at least a slave connected. # # repl-backlog-size 1mb # After a master has no longer connected slaves for some time, the backlog # will be freed. The following option configures the amount of seconds that # need to elapse, starting from the time the last slave disconnected, for # the backlog buffer to be freed. # 在某些时候,master 不再连接 slaves,backlog 将被释放。 # # A value of 0 means to never release the backlog. # 如果设置为 0 ,意味着绝不释放 backlog 。 # # repl-backlog-ttl 3600 # 当 master 不能正常工作的时候,Redis Sentinel 会从 slaves 中选出一个新的 master, # 这个值越小,就越会被优先选中,但是如果是 0 , 那是意味着这个 slave 不可能被选中。 # # 默认优先级为 100。 slave-priority 100 # It is possible for a master to stop accepting writes if there are less than # N slaves connected, having a lag less or equal than M seconds. # # The N slaves need to be in "online" state. # # The lag in seconds, that must be <= the specified value, is calculated from # the last ping received from the slave, that is usually sent every second. # # This option does not GUARANTEES that N replicas will accept the write, but # will limit the window of exposure for lost writes in case not enough slaves # are available, to the specified number of seconds. # # For example to require at least 3 slaves with a lag <= 10 seconds use: # # min-slaves-to-write 3 # min-slaves-max-lag 10 # # Setting one or the other to 0 disables the feature. # # By default min-slaves-to-write is set to 0 (feature disabled) and # min-slaves-max-lag is set to 10. ################################## 安全 ################################### # Require clients to issue AUTH before processing any other # commands. This might be useful in environments in which you do not trust # others with access to the host running redis-server. # # This should stay commented out for backward compatibility and because most # people do not need auth (e.g. they run their own servers). # # Warning: since Redis is pretty fast an outside user can try up to # 150k passwords per second against a good box. This means that you should # use a very strong password otherwise it will be very easy to break. # # 我们可以通过 config set requirepass "123456" # 通过 auth "123456" # 设置认证密码 # requirepass foobared # Command renaming. # # It is possible to change the name of dangerous commands in a shared # environment. For instance the CONFIG command may be renamed into something # hard to guess so that it will still be available for internal-use tools # but not available for general clients. # # Example: # # rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52 # # It is also possible to completely kill a command by renaming it into # an empty string: # # rename-command CONFIG "" # # Please note that changing the name of commands that are logged into the # AOF file or transmitted to slaves may cause problems. ################################### 限制 #################################### # Set the max number of connected clients at the same time. By default # this limit is set to 10000 clients, however if the Redis server is not # able to configure the process file limit to allow for the specified limit # the max number of allowed clients is set to the current file limit # minus 32 (as Redis reserves a few file descriptors for internal uses). # # 一旦达到最大限制,redis 将关闭所有的新连接 # 并发送一个‘max number of clients reached’的错误。 # # maxclients 10000 # 如果你设置了这个值,当缓存的数据容量达到这个值, redis 将根据你选择的 # eviction 策略来移除一些 keys。 # # 如果 redis 不能根据策略移除 keys ,或者是策略被设置为 ‘noeviction’, # redis 将开始响应错误给命令,如 set,lpush 等等, # 并继续响应只读的命令,如 get # # This option is usually useful when using Redis as an LRU cache, or to set # a hard memory limit for an instance (using the 'noeviction' policy). # # WARNING: If you have slaves attached to an instance with maxmemory on, # the size of the output buffers needed to feed the slaves are subtracted # from the used memory count, so that network problems / resyncs will # not trigger a loop where keys are evicted, and in turn the output # buffer of slaves is full with DELs of keys evicted triggering the deletion # of more keys, and so forth until the database is completely emptied. # # In short... if you have slaves attached it is suggested that you set a lower # limit for maxmemory so that there is some free RAM on the system for slave # output buffers (but this is not needed if the policy is 'noeviction'). # # 最大使用内存 # maxmemory # 最大内存策略,你有 5 个选择。 # # volatile-lru -> remove the key with an expire set using an LRU algorithm # volatile-lru -> 使用 LRU 算法移除包含过期设置的 key 。 # allkeys-lru -> remove any key accordingly to the LRU algorithm # allkeys-lru -> 根据 LRU 算法移除所有的 key 。 # volatile-random -> remove a random key with an expire set # allkeys-random -> remove a random key, any key # volatile-ttl -> remove the key with the nearest expire time (minor TTL) # noeviction -> don't expire at all, just return an error on write operations # noeviction -> 不让任何 key 过期,只是给写入操作返回一个错误 # # Note: with any of the above policies, Redis will return an error on write # operations, when there are not suitable keys for eviction. # # At the date of writing this commands are: set setnx setex append # incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd # sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby # zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby # getset mset msetnx exec sort # # The default is: # # maxmemory-policy noeviction # LRU and minimal TTL algorithms are not precise algorithms but approximated # algorithms (in order to save memory), so you can tune it for speed or # accuracy. For default Redis will check five keys and pick the one that was # used less recently, you can change the sample size using the following # configuration directive. # # The default of 5 produces good enough results. 10 Approximates very closely # true LRU but costs a bit more CPU. 3 is very fast but not very accurate. # # maxmemory-samples 5 ############################## APPEND ONLY MODE ############################### # By default Redis asynchronously dumps the dataset on disk. This mode is # good enough in many applications, but an issue with the Redis process or # a power outage may result into a few minutes of writes lost (depending on # the configured save points). # # The Append Only File is an alternative persistence mode that provides # much better durability. For instance using the default data fsync policy # (see later in the config file) Redis can lose just one second of writes in a # dramatic event like a server power outage, or a single write if something # wrong with the Redis process itself happens, but the operating system is # still running correctly. # # AOF and RDB persistence can be enabled at the same time without problems. # If the AOF is enabled on startup Redis will load the AOF, that is the file # with the better durability guarantees. # # Please check http://redis.io/topics/persistence for more information. appendonly no # The name of the append only file (default: "appendonly.aof") appendfilename "appendonly.aof" # The fsync() call tells the Operating System to actually write data on disk # instead to wait for more data in the output buffer. Some OS will really flush # data on disk, some other OS will just try to do it ASAP. # # Redis supports three different modes: # # no: don't fsync, just let the OS flush the data when it wants. Faster. # always: fsync after every write to the append only log . Slow, Safest. # everysec: fsync only one time every second. Compromise. # # The default is "everysec", as that's usually the right compromise between # speed and data safety. It's up to you to understand if you can relax this to # "no" that will let the operating system flush the output buffer when # it wants, for better performances (but if you can live with the idea of # some data loss consider the default persistence mode that's snapshotting), # or on the contrary, use "always" that's very slow but a bit safer than # everysec. # # More details please check the following article: # http://antirez.com/post/redis-persistence-demystified.html # # If unsure, use "everysec". # appendfsync always appendfsync everysec # appendfsync no # When the AOF fsync policy is set to always or everysec, and a background # saving process (a background save or AOF log background rewriting) is # performing a lot of I/O against the disk, in some Linux configurations # Redis may block too long on the fsync() call. Note that there is no fix for # this currently, as even performing fsync in a different thread will block # our synchronous write(2) call. # # In order to mitigate this problem it's possible to use the following option # that will prevent fsync() from being called in the main process while a # BGSAVE or BGREWRITEAOF is in progress. # # This means that while another child is saving, the durability of Redis is # the same as "appendfsync none". In practical terms, this means that it is # possible to lose up to 30 seconds of log in the worst scenario (with the # default Linux settings). # # If you have latency problems turn this to "yes". Otherwise leave it as # "no" that is the safest pick from the point of view of durability. no-appendfsync-on-rewrite no # Automatic rewrite of the append only file. # Redis is able to automatically rewrite the log file implicitly calling # BGREWRITEAOF when the AOF log size grows by the specified percentage. # # This is how it works: Redis remembers the size of the AOF file after the # latest rewrite (if no rewrite has happened since the restart, the size of # the AOF at startup is used). # # This base size is compared to the current size. If the current size is # bigger than the specified percentage, the rewrite is triggered. Also # you need to specify a minimal size for the AOF file to be rewritten, this # is useful to avoid rewriting the AOF file even if the percentage increase # is reached but it is still pretty small. # # Specify a percentage of zero in order to disable the automatic AOF # rewrite feature. auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb ################################ LUA SCRIPTING ############################### # Max execution time of a Lua script in milliseconds. # # If the maximum execution time is reached Redis will log that a script is # still in execution after the maximum allowed time and will start to # reply to queries with an error. # # When a long running script exceed the maximum execution time only the # SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be # used to stop a script that did not yet called write commands. The second # is the only way to shut down the server in the case a write commands was # already issue by the script but the user don't want to wait for the natural # termination of the script. # # Set it to 0 or a negative value for unlimited execution without warnings. lua-time-limit 5000 ################################ REDIS 集群 ############################### # # 启用或停用集群 # cluster-enabled yes # Every cluster node has a cluster configuration file. This file is not # intended to be edited by hand. It is created and updated by Redis nodes. # Every Redis Cluster node requires a different cluster configuration file. # Make sure that instances running in the same system does not have # overlapping cluster configuration file names. # # cluster-config-file nodes-6379.conf # Cluster node timeout is the amount of milliseconds a node must be unreachable # for it to be considered in failure state. # Most other internal time limits are multiple of the node timeout. # # cluster-node-timeout 15000 # A slave of a failing master will avoid to start a failover if its data # looks too old. # # There is no simple way for a slave to actually have a exact measure of # its "data age", so the following two checks are performed: # # 1) If there are multiple slaves able to failover, they exchange messages # in order to try to give an advantage to the slave with the best # replication offset (more data from the master processed). # Slaves will try to get their rank by offset, and apply to the start # of the failover a delay proportional to their rank. # # 2) Every single slave computes the time of the last interaction with # its master. This can be the last ping or command received (if the master # is still in the "connected" state), or the time that elapsed since the # disconnection with the master (if the replication link is currently down). # If the last interaction is too old, the slave will not try to failover # at all. # # The point "2" can be tuned by user. Specifically a slave will not perform # the failover if, since the last interaction with the master, the time # elapsed is greater than: # # (node-timeout * slave-validity-factor) + repl-ping-slave-period # # So for example if node-timeout is 30 seconds, and the slave-validity-factor # is 10, and assuming a default repl-ping-slave-period of 10 seconds, the # slave will not try to failover if it was not able to talk with the master # for longer than 310 seconds. # # A large slave-validity-factor may allow slaves with too old data to failover # a master, while a too small value may prevent the cluster from being able to # elect a slave at all. # # For maximum availability, it is possible to set the slave-validity-factor # to a value of 0, which means, that slaves will always try to failover the # master regardless of the last time they interacted with the master. # (However they'll always try to apply a delay proportional to their # offset rank). # # Zero is the only value able to guarantee that when all the partitions heal # the cluster will always be able to continue. # # cluster-slave-validity-factor 10 # Cluster slaves are able to migrate to orphaned masters, that are masters # that are left without working slaves. This improves the cluster ability # to resist to failures as otherwise an orphaned master can't be failed over # in case of failure if it has no working slaves. # # Slaves migrate to orphaned masters only if there are still at least a # given number of other working slaves for their old master. This number # is the "migration barrier". A migration barrier of 1 means that a slave # will migrate only if there is at least 1 other working slave for its master # and so forth. It usually reflects the number of slaves you want for every # master in your cluster. # # Default is 1 (slaves migrate only if their masters remain with at least # one slave). To disable migration just set it to a very large value. # A value of 0 can be set but is useful only for debugging and dangerous # in production. # # cluster-migration-barrier 1 # In order to setup your cluster make sure to read the documentation # available at http://redis.io web site. ################################## SLOW LOG ################################### # The Redis Slow Log is a system to log queries that exceeded a specified # execution time. The execution time does not include the I/O operations # like talking with the client, sending the reply and so forth, # but just the time needed to actually execute the command (this is the only # stage of command execution where the thread is blocked and can not serve # other requests in the meantime). # # You can configure the slow log with two parameters: one tells Redis # what is the execution time, in microseconds, to exceed in order for the # command to get logged, and the other parameter is the length of the # slow log. When a new command is logged the oldest one is removed from the # queue of logged commands. # The following time is expressed in microseconds, so 1000000 is equivalent # to one second. Note that a negative number disables the slow log, while # a value of zero forces the logging of every command. slowlog-log-slower-than 10000 # There is no limit to this length. Just be aware that it will consume memory. # You can reclaim memory used by the slow log with SLOWLOG RESET. slowlog-max-len 128 ############################# Event notification ############################## # Redis can notify Pub/Sub clients about events happening in the key space. # This feature is documented at http://redis.io/topics/keyspace-events # # For instance if keyspace events notification is enabled, and a client # performs a DEL operation on key "foo" stored in the Database 0, two # messages will be published via Pub/Sub: # # PUBLISH __keyspace@0__:foo del # PUBLISH __keyevent@0__:del foo # # It is possible to select the events that Redis will notify among a set # of classes. Every class is identified by a single character: # # K Keyspace events, published with __keyspace@__ prefix. # E Keyevent events, published with __keyevent@__ prefix. # g Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ... # $ String commands # l List commands # s Set commands # h Hash commands # z Sorted set commands # x Expired events (events generated every time a key expires) # e Evicted events (events generated when a key is evicted for maxmemory) # A Alias for g$lshzxe, so that the "AKE" string means all the events. # # The "notify-keyspace-events" takes as argument a string that is composed # by zero or multiple characters. The empty string means that notifications # are disabled at all. # # Example: to enable list and generic events, from the point of view of the # event name, use: # # notify-keyspace-events Elg # # Example 2: to get the stream of the expired keys subscribing to channel # name __keyevent@0__:expired use: # # notify-keyspace-events Ex # # By default all notifications are disabled because most users don't need # this feature and the feature has some overhead. Note that if you don't # specify at least one of K or E, no events will be delivered. notify-keyspace-events "" ############################### ADVANCED CONFIG ############################### # Hashes are encoded using a memory efficient data structure when they have a # small number of entries, and the biggest entry does not exceed a given # threshold. These thresholds can be configured using the following directives. hash-max-ziplist-entries 512 hash-max-ziplist-value 64 # Similarly to hashes, small lists are also encoded in a special way in order # to save a lot of space. The special representation is only used when # you are under the following limits: list-max-ziplist-entries 512 list-max-ziplist-value 64 # Sets have a special encoding in just one case: when a set is composed # of just strings that happens to be integers in radix 10 in the range # of 64 bit signed integers. # The following configuration setting sets the limit in the size of the # set in order to use this special memory saving encoding. set-max-intset-entries 512 # Similarly to hashes and lists, sorted sets are also specially encoded in # order to save a lot of space. This encoding is only used when the length and # elements of a sorted set are below the following limits: zset-max-ziplist-entries 128 zset-max-ziplist-value 64 # HyperLogLog sparse representation bytes limit. The limit includes the # 16 bytes header. When an HyperLogLog using the sparse representation crosses # this limit, it is converted into the dense representation. # # A value greater than 16000 is totally useless, since at that point the # dense representation is more memory efficient. # # The suggested value is ~ 3000 in order to have the benefits of # the space efficient encoding without slowing down too much PFADD, # which is O(N) with the sparse encoding. The value can be raised to # ~ 10000 when CPU is not a concern, but space is, and the data set is # composed of many HyperLogLogs with cardinality in the 0 - 15000 range. hll-sparse-max-bytes 3000 # Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in # order to help rehashing the main Redis hash table (the one mapping top-level # keys to values). The hash table implementation Redis uses (see dict.c) # performs a lazy rehashing: the more operation you run into a hash table # that is rehashing, the more rehashing "steps" are performed, so if the # server is idle the rehashing is never complete and some more memory is used # by the hash table. # # The default is to use this millisecond 10 times every second in order to # active rehashing the main dictionaries, freeing memory when possible. # # If unsure: # use "activerehashing no" if you have hard latency requirements and it is # not a good thing in your environment that Redis can reply form time to time # to queries with 2 milliseconds delay. # # use "activerehashing yes" if you don't have such hard requirements but # want to free memory asap when possible. activerehashing yes # The client output buffer limits can be used to force disconnection of clients # that are not reading data from the server fast enough for some reason (a # common reason is that a Pub/Sub client can't consume messages as fast as the # publisher can produce them). # # The limit can be set differently for the three different classes of clients: # # normal -> normal clients # slave -> slave clients and MONITOR clients # pubsub -> clients subscribed to at least one pubsub channel or pattern # # The syntax of every client-output-buffer-limit directive is the following: # # client-output-buffer-limit # # A client is immediately disconnected once the hard limit is reached, or if # the soft limit is reached and remains reached for the specified number of # seconds (continuously). # So for instance if the hard limit is 32 megabytes and the soft limit is # 16 megabytes / 10 seconds, the client will get disconnected immediately # if the size of the output buffers reach 32 megabytes, but will also get # disconnected if the client reaches 16 megabytes and continuously overcomes # the limit for 10 seconds. # # By default normal clients are not limited because they don't receive data # without asking (in a push way), but just after a request, so only # asynchronous clients may create a scenario where data is requested faster # than it can read. # # Instead there is a default limit for pubsub and slave clients, since # subscribers and slaves receive data in a push fashion. # # Both the hard or the soft limit can be disabled by setting them to zero. client-output-buffer-limit normal 0 0 0 client-output-buffer-limit slave 256mb 64mb 60 client-output-buffer-limit pubsub 32mb 8mb 60 # Redis calls an internal function to perform many background tasks, like # closing connections of clients in timeout, purging expired keys that are # never requested, and so forth. # # Not all tasks are performed with the same frequency, but Redis checks for # tasks to perform accordingly to the specified "hz" value. # # By default "hz" is set to 10. Raising the value will use more CPU when # Redis is idle, but at the same time will make Redis more responsive when # there are many keys expiring at the same time, and timeouts may be # handled with more precision. # # The range is between 1 and 500, however a value over 100 is usually not # a good idea. Most users should use the default of 10 and raise this up to # 100 only in environments where very low latency is required. hz 10 # When a child rewrites the AOF file, if the following option is enabled # the file will be fsync-ed every 32 MB of data generated. This is useful # in order to commit the file to the disk more incrementally and avoid # big latency spikes. aof-rewrite-incremental-fsync yes ~~~ # 6、redis的持久化 ## 1、RDB ###1、是什么? 介绍: 在指定的时间间隔内将内存中的数据集快照写入磁盘中,也就是行话讲的Snapshot快照,它恢复时是将快照文件直接读取到内存里。 Redis会单独创建(fork)一个子进程来进行持久化,会现将数据写入到一个临时文件中,待持久化过程都结束了,再用这个临时文件替换上次持久化好的文件。 整个过程中,主进程是不进行任何的IO操作的,这就确保了极高的性能 如果需要进行大规模数据的恢复,且对于数据恢复的完整性不是非常的敏感,那RDB方式要比AOF方式更加的高效。RDB的缺点就是最后一次持久化后的数据可能会丢失。 ### 2、Fork fork的作用是复制与当前进程一样的进程,新进程的所有数据(变量、环境变量、程序计数器等)数值和原进程的一样一致,但是是一个全新的进程,并作为原进程的子进程。 ### 3、RDB保存rdb文件,SNAPSHOTING快照 1、**shutdown**/**flushall** 的操作命令的时候,就是相当于迅速斩断电源,强行将redis的数据快照到本地操盘上。但是注意 flushall 是清空所有数据,数据库里面都是空的,好无意义。 2、**save**,是直接让某个当前数据直接被封,save只管保存,其他不管,全部阻塞,保存是阻塞主进程,客户端无法连接redis,等SAVE完成后,主进程才开始工作,客户端可以连接 (==禁用==) 3、**bgsave**:  是fork一个save的子进程,在执行save过程中,不影响主进程,客户端可以正常链接redis,等子进程fork执行save完成后,通知主进程,子进程关闭。很明显BGSAVE方式比较适合线上的维护操作,两种方式的使用一定要了解清楚在谨慎选择。 ### 4、优势 1) 适合大规模的数据恢复 2) 对数据完整性和一致性要求不是很高 ### 5、劣势 1)在一定间隔时间内做一次备份,如果redis这时候发生了意外,就会丢死最后一次所有数据的修改和保存 2) Fork的时候,内存中的数据相当于被克隆了一份,大致2倍膨胀性需要考虑,比较吃cpu ### 6、如何停止一定时间内的快照 动态所有停止RDB保存规则的方法:redis-cli config set save “” ## 2、AOF ### 1、是什么 ==以日志的方式记录每个写操作==,将Redis执行过的所有的写指令记录下来(读操作不记录),只许追加文件但不可以改写文件,redis启动之初会读取该文件重新构建数据。换言之,redis重启的话就根据日志文件的内容将指令从前到后执行一次以完成的数据的恢复工作。 ### 2、相关配置 1、appendonly: 默认是no, yes表示开启aof 2、appendfilename: aof文件名称 3、appendfsync: ​ 值为: always 表示同步持久化,每次数据变更都要立即记录到磁盘中,性能较差但是数据完整性好 ​ everysec: 表示出厂默认推荐,异步操作,每秒记录,如果一秒内机器损坏,有数据丢失 ​ no: ​ linux:df-h 看磁盘空间 ​ free:看内存 4、aof启动/修复/恢复 ​ a. 正常修复 ​ 1、启动:yes 修改默认的appendonly No设置成yes ​ 2、将有数据的aof文件复制一份保存到对应的目录上(config get dir) ​ 3、恢复:重启redis然后重新加载 ​ b.异常修复: ​ 1、启动设置yes ​ 2、备份被破坏的aof文件 ​ 3、修复:redis-check-aof --aof [文件名] ​ 4、恢复: 重启redis服务然后重新加载 5、rewrite: ​ a.是什么: AOF采用文件追加的方式,文件会越来越大为了避免出现此种情况,新增了重写的机制,当AOF文件 的大小超过所设定的阈值时,redis就会自动启动AOF文件的内容进行压缩,只保留可以恢复数据的最小指令集,可以使用命令bgrewriteof ​ b.触发机制: Redis会默认记录上次重写的AOF大小。默认配置时当AOF文件大小是上次rewrite后大小的一倍且文件大于64M时触发 ​ c.重写原理: AOF文件持续增长而过大时,会fork出一条新进程来将文件重写(也是先写临时文件最后再rename),遍历新进程的内存中数据,每条记录都有一条的set语句,重写aof文件的操作,并没有读取旧的aof文件,而是将整个内存中的数据库内容用命令的方式重写了一个新的aof文件,这点和快照有点类似" ​ d.No-appendsync-on-rewrite: 重写的时候是否运用appendsync,默认是no,保证数据安全 ​ e.auto-aof-rewrite-min-sizefix: 设置redis的aof的rewrite的基础值,默认值是64mb ​ f.auto-aof-rewrite-precentage: 设置重写的原先的aof文件倍数,默认是一倍 6、劣势: ​ a. 相同数据集的数据而言,aof文件远大于rdb文件,恢复速度大于rdb ​ b Aof运行效率要慢于rdb,每秒同步策略效率较好,不同步效率和rdb相同。 两个的优缺点 ​ 1、Rdb持久化方式能够在特定指定的时间间隔能对你的数据进行快照存储 ​ 2、AOF持久化方式记录每次对服务器写的操作,当服务器重启的时候,会重新执行这些的命令来恢复原始的数据,AOF命令以redis协议追加保存每次写的操作到文件末尾,redis还能对AOF文件进行后台重写,使得AOF文件不至于过大,只做缓存,如果你只希望你的数据在服务器运行的时候存在,你也可以不使用任何持久化方式, ==同时开启两种持久化方式== ​ 1、在这种情况下,当redis重启的时候=会优先载入AOF文件来恢复原始的数据,因为在通常的情况下AOF保存的数据集比rdb文件保存的数据集要完整,rdb数据不实时,同时使用俩者时服务器重启也只会去找AOF文件,那要不要使用AOF文件呢? 作者建议不要,因为RDB更适合用于备份数据库(AOF不断的变化,不好备份),快速重启,而且不会由AOF潜在的bug,留着作为一个万一的手段。 # 7、redis的事务 ## 1、是什么? 可以执行一个多个命令,本质上是一组命令的集合,一个事务中的所有的命令都会被序列化,==按顺序串行化执行执行而不会被其他命令插入,不许加塞==。 ## 2、使用 悲观锁/乐观锁/CAS(Check and Set): ​ a) 悲观锁 ​ i 悲观锁就是很悲观,每次拿数据的时候都会被别人修改,所以每次在拿数据的时候都会上一把锁,这样的别人想要拿到这个数据就会block知道它拿到锁;传统的关系型数据库里面就是用了很多这个锁机制,比如行锁,表锁等,读锁、写锁等,都是在操作之前先上锁。 ​ b)乐观锁 ​ i 顾名思义:就是很乐观。就是每次去拿数据的时候都认为别人不会修改,所以是不会上锁的,但是在更新的时候会判断一下,在此期间别人没有去更新这个数据,可以使用此版本号等机制。乐观锁是用于多读的应用类型,这样可以提高吞吐量 ​ ii ==乐观锁策略: 提交版本必须是大于记录当前版本才能执行。== ~~~shell // 测试和运行事务 127.0.0.1:6379> multi //表示开启事务 OK 127.0.0.1:6379> lpush a 1 222 QUEUED 127.0.0.1:6379> rpush a 2 3 QUEUED 127.0.0.1:6379> exec // 表示执行事务 1) (integer) 2 2) (integer) 4 127.0.0.1:6379> keys * 1) "key1" 2) "a" // 取消事务 127.0.0.1:6379> multi //表示开启事务 OK 127.0.0.1:6379> sadd set01 a QUEUED 127.0.0.1:6379> sadd set02 b QUEUED 127.0.0.1:6379> discard // 表示取消事务 OK // 下面表示 redis是部分支持事务的 127.0.0.1:6379> multi OK 127.0.0.1:6379> set h a QUEUED 127.0.0.1:6379> incr h QUEUED 127.0.0.1:6379> set i a QUEUED 127.0.0.1:6379> exec 1) OK 2) (error) ERR value is not an integer or out of range 3) OK 127.0.0.1:6379> keys * 1) "key1" 2) "i" 3) "h" 4) "a" // 通过watch进行监控、 // 客户端1 127.0.0.1:6379> incrby balance 20 (integer) 80 // 客户端2 127.0.0.1:6379> watch balance OK 127.0.0.1:6379> multi OK 127.0.0.1:6379> incrby balance 20 QUEUED 127.0.0.1:6379> exec (nil) // 说明是失败了,原因是因为watch监控key的时候,如果key的值发生了变化,那么事 // 务将失败 127.0.0.1:6379> ~~~ | 序号 | 命令 | 描述 | | ---- | ------- | ------------------------------------------------------------ | | 1 | discard | 取消事务,放弃执行事务快内的所有命令 | | 2 | exec | 执行所有事务块代码命令 | | 3 | unwatch | 取消对watch命令对所有key的监控 | | 4 | watch | 监控一个或者多个key,如果在事务执行之前,key被其他命令改动,那么事务将会被打断 | # 8、发布/订阅 ## 1、是什么 ① 进程间的一种消息通信模式:发送者(pub)发送消息,订阅者(sub)接收消息。 ① 订阅/发布 消息图 ## 2、命令 ① subscribe 订阅信息 ② public推送信息 ~~~shell // 客户端1 127.0.0.1:6379[15]> subscribe c1 c2 c3 Reading messages... (press Ctrl-C to quit) 1) "subscribe" 2) "c1" 3) (integer) 1 1) "subscribe" 2) "c2" 3) (integer) 2 1) "subscribe" 2) "c3" 3) (integer) 3 1) "message" 2) "c1" 3) "hellomyson" 1) "message" 2) "c3" 3) "dddd" // 客户端2 127.0.0.1:6379[15]> PUBLISH c1 hellomyson (integer) 1 127.0.0.1:6379[15]> publish c3 dddd (integer) 1 127.0.0.1:6379[15]> ~~~ # 9、redis的主从复制(Master/Slave) ## 1、是什么 是我们平时所说的主从复制,主机的数据更新后配置和策略,自动同步到备机的master/slaver机制,master以写为主,slave以读为主 ## 2、功能 1、读写分离 2、容灾恢复 ## 3、操作步骤 1、配从(库)不配主 (库) 2、从库配置:slaveof 主库ip 主库端口 ​ 1) 每次与master断开之后,都需要重新连接,除非你配置进redis.conf文件。 ​ 2)Info replication 3、修改配置文件 ​ 1) 拷贝多个redis.conf文件 ​ 2) 开启daemonize yes ​ 3) Pid文件名字 ​ 4) 指定不同的端口 ​ 5) Log文件名字 ​ 6) Dump.rdb名字 4、常用的三种方式 (但是这些都是我们人工操作) ​ 1) 一主二仆 ​ ```shell // 查看当前 复制信息 127.0.0.1:8003> info replication ``` ​ ![1551185513455](https://gitee.com/bianpengfei/redis-demo/raw/master/images/1551185513455.png) ~~~shell // 表示要和哪个地址端口进行主从复制 127.0.0.1:8003> slaveof 127.0.0.1 8001 ~~~ ![1551185837863](https://gitee.com/bianpengfei/redis-demo/raw/master/images/1551185837863.png) **==主机死了,从机原地待命==** ​ **==从机死了,主机依旧==** ​ 2) 薪火相传 ​ a. 上一个slave可以是下一个slave的master。Slave同样的可以接受其他slave的连接和同步请求,那么该 ​ slave作为了链条中下一个master,可以有效的减轻master压力。 ​ b. 中途变更转向: 会清除之前的数据,重新建立拷贝最新的 ​ c. slaveof新主库IP新主库端口 ​ ~~~properties slaveof no one //使自己变成master slaveof [host] [port] //成为别人的slave ~~~ ## 4、复制原理 ​ 1) slave启动成功后连接到master后发送一个sync命令 ​ 2) Master接到命令后启动后台的存盘进程,同时收集所有接收的用于修改数据及命令。在后台进程执行完毕后,master将传送整个数据文件到slave,以完成一次完全同步 ​ 3) 全量复制,而slave服务在接收到数据库文件数据后,将其存盘并加载到内存中 ​ 4) 增量复制,master继续将新的所有收集到的修改命令依次传给slave,依次完成同步,但是只要重新连接master,一次完全同步(全量复制)将会自动换行 ​ ## 5、哨兵模式(sentinel) 反客为主的 自动版,==**不需要人工操作**== 1) 是反客为主的自动版,能够后台监控主机是否有故障,如果是故障了根据投票数自动将从库转换为主库 2) 具体操作: ​ a.  自定义在/myRedis目录下新建sentinel.conf文件,**备注文件名不允许有错误。** ​ b. 配置哨兵,填写内容 ​ i  sentinel monitor 被监控的数据库名字(自己起名字) 127.0.0.1  8001 1 ​ ![1551189258757](https://gitee.com/bianpengfei/redis-demo/raw/master/images/1551189258757.png) ​ ii  上面最后一个字,表示主机挂掉之后slave投票看让谁接c替成为主机,得票多的成为主机 ​ iii 启动哨兵 /usr/local/bin/redis-sentienl   /myRedis/sentinel.conf ![1551189471668](https://gitee.com/bianpengfei/redis-demo/raw/master/images/1551189471668.png) 等过了一会 : ![1551189574392](https://gitee.com/bianpengfei/redis-demo/raw/master/images/1551189574392.png) 这说明我们的哨兵模式启动成功 说明8002端口的从机变成了主机 我们再打开原先挂掉的主机:运行命令 info replication,发现 变成了 从机,并且听从之前8002主机 ![1551189776948](https://gitee.com/bianpengfei/redis-demo/raw/master/images/1551189776948.png)