# movingpandas-examples **Repository Path**: blackender/movingpandas-examples ## Basic Information - **Project Name**: movingpandas-examples - **Description**: No description available - **Primary Language**: Python - **License**: BSD-3-Clause - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-03-18 - **Last Updated**: 2022-03-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Welcome to the MovingPandas examples repository! This repository contains Jupyter notebooks demonstrating MovingPandas features. 👉 **Jump right in with [Example 1: Getting Started](https://github.com/anitagraser/movingpandas-examples/blob/main/1-tutorials/1-getting-started.ipynb)** You can run the these notebooks on MyBinder - no installation required: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/anitagraser/movingpandas-examples/main) The main MovingPandas repo is https://github.com/anitagraser/movingpandas Visit **[movingpandas.org](http://movingpandas.org)** for details! ## Installation If you want to run these examples on your local machine, use the environment definition file (environment.yml) provided in this repository. 1. Clone the movingpandas-examples repository 1. Install Conda (command line interface) or Anaconda (graphical user interface) and continue with the instructions in the corresponding section ### Using conda 1. Navigate to the cloned directory 1. Run `conda env create -f environment.yml` ### Using Anaconda 1. In Anaconda Navigator | Environments | Import select the movingpandas-experiments environment.yml from the cloned directory ## Post installation 1. Activate the `mpd-ex` environment 1. Launch Jupyter notebooks and navigate to the `movingpandas-examples` directory 1. Now you can run the notebooks, experiment with the code and adjust it to your own data ## Generating html exports using nbautoexport First, you will need to install nbautoexport. Then register nbautoexport to run automatically while using Jupyter Notebook or Jupyter Lab: 1. conda install nbautoexport --channel conda-forge 1. nbautoexport install Finally restart the Jupyter server.