# NTU-Machine-learning **Repository Path**: blackldh/NTU-Machine-learning ## Basic Information - **Project Name**: NTU-Machine-learning - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-04-10 - **Last Updated**: 2021-04-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 大鱼AI🐟 :李宏毅机器学习(台湾大学) ## 课程资料 1. [课程主页](http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17_2.html) 2. [课程笔记](https://blog.csdn.net/dukuku5038/article/details/82253966) 3. [课件百度云下载](https://pan.baidu.com/s/1UKYLGte5SJ1EWxxAaUcKOw) 3. [课程视频](https://www.bilibili.com/video/av10590361?from=search&seid=8516959386096686045) 4. [环境配置Anaconda](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/assets/Anaconda完全入门指南.md) 5. [Jupyter NoteBook配置](http://baijiahao.baidu.com/s?id=1601883438842526311&wfr=spider&for=pc) 6. [Anaconda加速下载镜像](https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=D) 7. [作业](https://github.com/dafish-ai/NTU-Machine-learning/tree/master/李宏毅机器学习-作业) 8. 比赛环境推荐使用Linux或者Mac系统,以下环境搭建方法皆适用: [Docker环境配置](https://github.com/ufoym/deepo) [本地环境配置](https://github.com/learning511/cs224n-learning-camp/blob/master/environment.md) ## 重要一些的资源: 1. [Dr.Wu 博客71篇(机器学习、深度学习、强化学习、对抗网络)](https://me.csdn.net/dukuku5038) 2. [Dr.Wu 本人知乎](https://www.zhihu.com/people/Dr.Wu/activities) 3. [深度学习经典论文](https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap.git) 4. [深度学习斯坦福教程](http://deeplearning.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B) 5. [廖雪峰python3教程](https://www.liaoxuefeng.com/article/001432619295115c918a094d8954bd493037b03d27bf9a9000) 6. [github教程](https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000) 7. [莫烦机器学习教程](https://morvanzhou.github.io/tutorials) 8. [深度学习经典论文](https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap.git) 9. [机器学习代码修行100天](https://github.com/Avik-Jain/100-Days-Of-ML-Code) 10. [吴恩达机器学习新书:machine learning yearning](https://github.com/AcceptedDoge/machine-learning-yearning-cn) 11. [自上而下的学习路线: 软件工程师的机器学习](https://github.com/ZuzooVn/machine-learning-for-software-engineers/blob/master/README-zh-CN.md) ## 1. 前言 ![enter image description here](https://images.gitbook.cn/f76f1200-3d45-11e9-b80b-13b78e2a7517)Â ### 中文世界中最好的机器学习课程! 李宏毅老师的机器学习和深度学习系列课程,是中文世界中最好!课程中有深入浅出的讲解和幽默生动的比喻(还有口袋妖怪哦)。关键一切都是中文的!(除了 ^_^) 本课程李宏毅老师的机器学习核心内容带学,作业讲解。主要包括: (一)监督学习(回归、分类、BP反向传播、梯度下降) (二)无监督学习(AutoEncoder、Neighbor Embedding、Deep Generative Model) (三)迁移学习 (Transfer learning) (四)结构化学习(Structure learning) 本课程每课都有课件,每周都有配套作业代码,十分推荐推荐学习。 ## 2.数学知识复习 1.[线性代数](http://web.stanford.edu/class/cs224n/readings/cs229-linalg.pdf) 2.[概率论](http://web.stanford.edu/class/cs224n/readings/cs229-prob.pdf) 3.[凸函数优化](http://web.stanford.edu/class/cs224n/readings/cs229-cvxopt.pdf) 4.[随机梯度下降算法](http://cs231n.github.io/optimization-1/) #### 中文资料: - [机器学习中的数学基本知识](https://www.cnblogs.com/steven-yang/p/6348112.html) - [统计学习方法](http://vdisk.weibo.com/s/vfFpMc1YgPOr) **大学数学课本(从故纸堆里翻出来^_^)** ### 3.编程工具 #### 大鱼谷歌python训练营: - [谷歌python](https://github.com/dafish-ai/Python-GoogleCourse) #### 斯坦福资料: - [Python复习](http://web.stanford.edu/class/cs224n/lectures/python-review.pdf) #### 4. 中文书籍推荐: - 《机器学习》周志华 - 《统计学习方法》李航 - 《机器学习课》邹博 ## 5. 学习安排 本课程需要8周共15节课, 每周具体时间划分为4个部分: - 1部分安排周一到周二 - 2部分安排在周四到周五 - 3部分安排在周日 - 4部分作业是本周任何时候空余时间 - 周日晚上提交作业运行截图 - 周三、周六休息^_^ #### 6.作业提交指南: ## 7.学习安排 一、整体学习路线 ![enter image description here](https://images.gitbook.cn/6cca4220-37df-11e9-8aed-c31cd798611f) 二、整体学习分解脑图 ![](assets/markdown-img-paste-2019021415594594.png) 三、具体学习计划 ### week 1 **学习准备** **知识点复习** **学习组队** **第1节: 引言(Introduction)** **课件:**[lecture1](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%AE%8F%E6%AF%85%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/1-introduction.pdf) **笔记:**[lecture1-note1](https://blog.csdn.net/dukuku5038/article/details/82347021) **视频:** 1.1 欢迎:[Welcome to Machine Learning](https://www.bilibili.com/video/av10590361/?p=1) 1.2 为什么要学习机器学习?:[Why learning ?](https://www.bilibili.com/video/av10590361/?p=2) **作业 Week1:** 制定自己的学习计划,开通自己的学习博客,注册自己的github:[如操作手册](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%AE%8F%E6%AF%85%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E4%BD%9C%E4%B8%9A/week1/Week1-CSDN%E5%8D%9A%E5%AE%A2%E4%B8%8EGithub%E5%88%9B%E5%BB%BA.md) --- ### week 2 **第2节: 回归问题** **课件:**[lecture2](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%AE%8F%E6%AF%85%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/2-Regression.pdf) **笔记:**[lecture2-note2](https://blog.csdn.net/dukuku5038/article/details/82503111) **视频:** 2.1 回归:[Regression](https://www.bilibili.com/video/av10590361/?p=3) 2.2 回归 Demo:[Demo](https://www.bilibili.com/video/av10590361/?p=4) **第3节: 错误分析** **课件:**[lecture3](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%AE%8F%E6%AF%85%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/3-Bias%20and%20Variance%20(v2).pdf) **笔记:**[lecture3-note3](https://blog.csdn.net/dukuku5038/article/details/82682855) **视频:** 2.3 错误从哪里来[Error Handle](https://www.bilibili.com/video/av10590361/?p=5) **作业 Week2:**: 纯python实现[CEO的的利润预测](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%AE%8F%E6%AF%85%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E4%BD%9C%E4%B8%9A/week2/%E4%BD%9C%E4%B8%9A1.md) --------------------------------------------------------- ### week 3 **第4节: 梯度下降(Gradient Descent )** **课件:**[lecture4](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/李宏毅机器学习-课件/4-Gradient%20Descent%20(v2).pdf) **笔记:**[lecture4-note4](https://blog.csdn.net/dukuku5038/article/details/83608873) **视频:** 3.1梯度下降:[Gradient Descent](https://www.bilibili.com/video/av10590361/?p=6) 3.2梯度下降Demo1:[Gradient Descent Demo1](https://www.bilibili.com/video/av10590361/?p=7) 3.3梯度下降Demo2:[Gradient Descent Demo2](https://www.bilibili.com/video/av10590361/?p=8) **作业 Week3:**: [PM2.5回归预测](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%AE%8F%E6%AF%85%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E4%BD%9C%E4%B8%9A/week3/Week3-PM2.5%E9%A2%84%E6%B5%8B.md) --------------------------------------------------------- ### Week 4 **第5节:分类:概率生成模型(Classification:Probabilistic Generative Model)** **课件:**[lecture5](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/李宏毅机器学习-课件/5-Classification%20(v3).pdf) **笔记:**[lecture5-note5](https://blog.csdn.net/dukuku5038/article/details/82698867) **视频:** 4.1分类:概率生成模型:[Classification:Probabilistic Generative Model](https://www.bilibili.com/video/av10590361/?p=10) **第6节:分类:逻辑回归(Logistic Regression)** **课件:**[lecture6](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/李宏毅机器学习-课件/6-Logistic%20Regression%20(v3).pdf) **笔记:**[lecture6-note6](https://blog.csdn.net/dukuku5038/article/details/82585523) **视频:** 4.2分类:逻辑回归:[Logistic Regression](https://www.bilibili.com/video/av10590361/?p=11) **作业 Week4:**: 收入预测[Winner or Loser](https://github.com/dafish-ai/NTU-Machine-learning/tree/master/%E6%9D%8E%E5%AE%8F%E6%AF%85%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E4%BD%9C%E4%B8%9A/week4) --------------------------------------------------------- ### Week 5 **第7节:深度学习简介(Introduction to Deep learning)** **课件:**[lecture7](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%AE%8F%E6%AF%85%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/7-DL%20(v2).pdf) **笔记:**[lecture7-note7](https://blog.csdn.net/dukuku5038/article/details/83217542) **视频:** 5.1 深度度学习简介:[Introduction to Deep learning](https://www.bilibili.com/video/av10590361/?p=13) 5.2 反向传播算法:[Back Prppagation](https://www.bilibili.com/video/av10590361/?p=14) **第8节:“Hello world” of Deep learning** **课件:**[lecture8](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%AE%8F%E6%AF%85%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/8-BP.pdf) **笔记:**[lecture8-note8](https://blog.csdn.net/dukuku5038/article/details/83721330) **视频:** 5.1 [DeepLearning Demo](https://www.bilibili.com/video/av10590361/?p=15) 5.2 Keras Demo:[Demo](https://www.bilibili.com/video/av10590361/?p=16) 5.2 Keras Demo1:[Demo1](https://www.bilibili.com/video/av10590361/?p=17) **第9节:深度学习技巧 Deep learning tips** **课件:**[lecture9](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%AE%8F%E6%AF%85%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/10-DNN%20tip.pdf) **笔记:**[lecture8-note9](https://blog.csdn.net/dukuku5038/article/details/83680923) **视频:** 5.3 [DeepLearning tips](https://www.bilibili.com/video/av10590361/?p=18) 5.4 Keras Demo2:[Demo2](https://www.bilibili.com/video/av10590361/?p=19) **作业 Week5:**: 深度神经网络[Keras实现手写数字识别](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%AE%8F%E6%AF%85%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E4%BD%9C%E4%B8%9A/week5/Week5-Keras%E5%AE%9E%E7%8E%B0%E6%89%8B%E5%86%99%E6%95%B0%E5%AD%97%E8%AF%86%E5%88%AB.md) --------------------------------------------------------- ### Week 6 **第10节:卷积神经网络(CNN)** **课件:**[lecture10](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%AE%8F%E6%AF%85%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/11-CNN.pdf) **笔记:**[lecture10-note10](https://blog.csdn.net/dukuku5038/article/details/83735926) **视频:** 6.1 卷积神经网络:[CNN](https://www.bilibili.com/video/av10590361/?p=21) **第11节:为什么要深度学习(Why Deep)** **课件:**[lecture11](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%AE%8F%E6%AF%85%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/12-Why-deep.pdf) **笔记:**[lecture11-note11](https://blog.csdn.net/dukuku5038/article/details/83774169) **视频:** 6.2 为什么要深度学习:[Why Deep](https://www.bilibili.com/video/av10590361/?p=22) **作业 Week6:**: 卷积神经网络[CNN实现手写数字识别](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%AE%8F%E6%AF%85%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E4%BD%9C%E4%B8%9A/week6/Week6-CNN%E5%AE%9E%E7%8E%B0%E6%89%8B%E5%86%99%E6%95%B0%E5%AD%97%E8%AF%86%E5%88%AB.md) --------------------------------------------------------- ### Week 7 **第12节:循环神经网络(RNN)** **课件:**[lecture12](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/13-RNN%20(v2).pdf) **笔记:**[lecture12-note12](https://blog.csdn.net/dukuku5038/article/details/83830994) **视频:** 7.1 循环神经网络:[RNN](https://www.bilibili.com/video/av10590361/?p=36) **第13节:循环神经网络(LSTM、GRU)** **课件:**[lecture13](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/13-RNN%20(v2).pdf) **笔记:**[lecture13-note13](https://blog.csdn.net/dukuku5038/article/details/83870172) **视频:** 7.2 循环神经网络:[LSTM,GRU](https://www.bilibili.com/video/av10590361/?p=37) **作业 Week7:**: Twitter文本情绪分类[Text Sentiment](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%AE%8F%E6%AF%85%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E4%BD%9C%E4%B8%9A/week7/README.md) --------------------------------------------------------- ### Week 8 **第14节:迁移学习** **课件:**[lecture14](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/16-transfer%20(v3).pdf) **笔记:**[lecture14-note14]() **视频:** 8.1 迁移学习:[Transfer learning](https://www.bilibili.com/video/av10590361/?p=30) **第15节:强化学习(Reinforcement learning)** **课件:**[lecture15](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/17-RL%20(v6).pdf) **笔记:**[lecture15-note15](https://blog.csdn.net/dukuku5038/article/details/84810898) **视频:** 8.2 强化学习:[Reinforcement learning](https://www.bilibili.com/video/av10590361/?p=39) --- ### 课程大作业:Kaggle 泰坦尼克号 ![enter image description here](https://images.gitbook.cn/77443310-3e1e-11e9-a7f2-db689d3df630) ## 联系我们:
官网:[点击进入](http://www.dayufish.com/)
官方公众号: ![](assets/markdown-img-paste-20190216162623187.png)