# Flux.jl **Repository Path**: blackpercy/Flux.jl ## Basic Information - **Project Name**: Flux.jl - **Description**: Flux 机器学习 - **Primary Language**: Julia - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-11-28 - **Last Updated**: 2024-12-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

[![](https://img.shields.io/badge/Documentation-stable-blue.svg)](https://fluxml.github.io/Flux.jl/stable/) [![](https://img.shields.io/badge/Documentation-dev-blue.svg)](https://fluxml.github.io/Flux.jl/dev/) [![DOI](https://joss.theoj.org/papers/10.21105/joss.00602/status.svg)](https://doi.org/10.21105/joss.00602) [![Flux Downloads](https://img.shields.io/badge/dynamic/json?url=http%3A%2F%2Fjuliapkgstats.com%2Fapi%2Fv1%2Fmonthly_downloads%2FFlux&query=total_requests&suffix=%2Fmonth&label=Downloads)](http://juliapkgstats.com/pkg/Flux)
[![][action-img]][action-url] [![][codecov-img]][codecov-url] [![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor's%20Guide-blueviolet)](https://github.com/SciML/ColPrac)
[action-img]: https://github.com/FluxML/Flux.jl/workflows/CI/badge.svg [action-url]: https://github.com/FluxML/Flux.jl/actions [codecov-img]: https://codecov.io/gh/FluxML/Flux.jl/branch/master/graph/badge.svg [codecov-url]: https://codecov.io/gh/FluxML/Flux.jl Flux is an elegant approach to machine learning. It's a 100% pure-Julia stack, and provides lightweight abstractions on top of Julia's native GPU and AD support. Flux makes the easy things easy while remaining fully hackable. Works best with [Julia 1.10](https://julialang.org/downloads/) or later. Here's a very short example to try it out: ```julia using Flux, Plots data = [([x], 2x-x^3) for x in -2:0.1f0:2] model = Chain(Dense(1 => 23, tanh), Dense(23 => 1, bias=false), only) opt_state = Flux.setup(Adam(), model) for epoch in 1:1000 Flux.train!((m,x,y) -> (m(x) - y)^2, model, data, opt_state) end plot(x -> 2x-x^3, -2, 2, legend=false) scatter!(x -> model([x]), -2:0.1f0:2) ``` The [quickstart page](https://fluxml.ai/Flux.jl/stable/guide/models/quickstart/) has a longer example. See the [documentation](https://fluxml.github.io/Flux.jl/) for details, or the [model zoo](https://github.com/FluxML/model-zoo/) for examples. Ask questions on the [Julia discourse](https://discourse.julialang.org/) or [slack](https://discourse.julialang.org/t/announcing-a-julia-slack/4866). If you use Flux in your research, please [cite](CITATION.bib) our work.