# rl-navigation **Repository Path**: boleichen/rl-navigation ## Basic Information - **Project Name**: rl-navigation - **Description**: No description available - **Primary Language**: Unknown - **License**: BSD-3-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-03-19 - **Last Updated**: 2021-03-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Reinforced Imitation ==================== This repository contains the tensorflow implementation for training a reinforcement learning based map-less navigation model, as described in the paper:\ [Reinforced Imitation: Sample Efficient Deep Reinforcement Learning for Map-less Navigation by Leveraging Prior Demonstrations](https://arxiv.org/abs/1805.07095) # Requirements 1. Ubuntu 2. Python 2.7 3. [ROS Indigo](http://wiki.ros.org/indigo) or [ROS Kinetic](http://wiki.ros.org/kinetic) 4. Stage-ros simulator, with `add_pose_sub` enabled. Can be found in this [branch](https://github.com/ros-simulation/stage_ros/tree/add_pose_sub) of the repository. # Training the Model 1. First run the stage simulator: `roslaunch reinforcement_learning_navigation stage_sim.launch` 2. In a separate terminal, run the training code: `rosrun reinforcement_learning_navigation train_cpo.py --output_name $experiment_name$`\ In order to use pre-trained weights from imitation learning, add the arguments `--jump_start 1 --model_init $path_to_policy_weights$` # Citation If you use our code in your research, please cite our paper. ``` @ARTICLE{pfeiffer2018ral, author={M. Pfeiffer and S. Shukla and M. Turchetta and C. Cadena Lerma and A. Krause and R. Siegwart and J. Nieto}, journal={IEEE Robotics and Automation Letters}, title={{Reinforced Imitation: Sample Efficient Deep Reinforcement Learning for Map-less Navigation by Leveraging Prior Demonstrations}}, year={2018}, volume={3}, number={4}, pages={4423-4430} } ``` # References Our training model uses Constrained Policy Optimization : \[[Paper](https://arxiv.org/abs/1705.10528)\] \[[Code](https://github.com/jachiam/cpo)\]