# DisenPOI **Repository Path**: branchlets/DisenPOI ## Basic Information - **Project Name**: DisenPOI - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-11-19 - **Last Updated**: 2023-11-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## DisenPOI This is the pytorch implementation for our WSDM 2023 [paper](https://arxiv.org/abs/2210.16591): > Yifang Qin, Yifan Wang, Fang Sun, Wei Ju, Xuyang Hou, Zhe Wang, Jia Cheng, Jun Lei and Ming Zhang(2022). > DisenPOI: Disentangling Sequential and Geographical Influence for Point-of-Interest Recommendation In this paper, we propose DisenPOI, a novel Disentangled dual-graph framework for POI recommendation. DisenPOI jointly utilizes sequential and geographical relationships on two separate graphs and disentangles the two influences with self-supervision. ### Environment Requirement The code has been tested running under Python 3.8.13. The required packages are as follows: - pytorch == 1.11.0 - torch_geometric == 2.0.4 - pandas == 1.4.1 - sklearn == 0.23.2 Please cite our paper if you use the code.