# NeuralPoints **Repository Path**: bronyale/NeuralPoints ## Basic Information - **Project Name**: NeuralPoints - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-03-06 - **Last Updated**: 2025-03-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Neural Points 【Code of CVPR 2022 paper】Neural Points: Point Cloud Representation with Neural Fields for Arbitrary Upsampling (CVPR 2022). - Paper address: [https://arxiv.org/abs/2112.04148](https://arxiv.org/abs/2112.04148) - Project webpage: [https://wanquanf.github.io/NeuralPoints.html](https://wanquanf.github.io/NeuralPoints.html) ![avatar](./utils/Pipeline_v5.png) ## Prerequisite Installation The code has been tested on Ubuntu 18, with Python3.8, PyTorch 1.6 and Cuda 10.2: conda create --name NePs conda activate NePs conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.2 -c pytorch conda install -c conda-forge igl Before running the code, you need to build the cuda&C++ extensions of Pytorch: cd [ProjectPath]/model/model_for_supp/pointnet2 python setup.py install ## How to use the code: Download our dataset: [dataset](https://pan.baidu.com/s/1BLFobnIkuLqrXsdAAVqA0g), (extracting code: qiqq). Put the 'Sketchfab2' folder into: [ProjectPath]/data. Firstly, you need to change the working directory: cd [ProjectPath]/model/conpu_v6 To obtain the testing results of the testing set, run: python train_script101_test.py To train our network, run: python train_script101.py ## Citation Please cite this paper with the following bibtex: @inproceedings{feng2022np, author = {Wanquan Feng and Jin li and Hongrui Cai and Xiaonan Luo and Juyong Zhang}, title = {Neural Points: Point Cloud Representation with Neural Fields for Arbitrary Upsampling}, booktitle = {{IEEE/CVF} Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2022} } ## Acknowledgement In this repo, we borrowed the backbone structure from [DGCNN](https://github.com/WangYueFt/dgcnn).