# LeViT_UNet **Repository Path**: buaaduke/LeViT_UNet ## Basic Information - **Project Name**: LeViT_UNet - **Description**: No description available - **Primary Language**: Python - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-12-16 - **Last Updated**: 2021-12-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # LeViT_UNet For medical image segmentation 1. Our model is based on LeViT (https://github.com/facebookresearch/LeViT). You'd better gitclone its codes. Thanks for its great job. 2. There are three models which can be build directly. They are LeViT_UNet_128s, LeViT_UNet_192, and LeViT_UNet_384. You can build one of the models as it follows: ``` model = Build_LeViT_UNet_192(num_classes=9, pretrained=True) model.eval() output = model(torch.randn(1, 1, 224, 224)) ``` If you use this code for a paper please cite: ``` @article{LeViT-UNet, author = {Guoping Xu and Xingrong Wu and Xuan Zhang and Xinwei He}, title = {LeViT-UNet: Make Faster Encoders with Transformer for Medical Image Segmentation}, journal = {CoRR}, volume = {abs/2107.08623}, year = {2021}, url = {https://arxiv.org/abs/2107.08623}, eprinttype = {arXiv}, eprint = {2107.08623}, timestamp = {Thu, 22 Jul 2021 11:14:11 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2107-08623.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```