# T2T-ViT **Repository Path**: buaaduke/T2T-ViT ## Basic Information - **Project Name**: T2T-ViT - **Description**: No description available - **Primary Language**: Python - **License**: BSD-3-Clause-Clear - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-11-09 - **Last Updated**: 2024-07-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, [ICCV 2021](https://openaccess.thecvf.com/content/ICCV2021/html/Yuan_Tokens-to-Token_ViT_Training_Vision_Transformers_From_Scratch_on_ImageNet_ICCV_2021_paper.html) ### Update: 2021/03/11: update our new results. Now our T2T-ViT-14 with 21.5M parameters can reach 81.5% top1-acc with 224x224 image resolution, and 83.3\% top1-acc with 384x384 resolution. 2021/02/21: T2T-ViT can be trained on most of common GPUs: 1080Ti, 2080Ti, TiTAN V, V100 stably with '--amp' (Automatic Mixed Precision). In some specifical GPU like Tesla T4, 'amp' would cause NAN loss when training T2T-ViT. If you get NAN loss in training, you can disable amp by removing '--amp' in the [training scripts](https://github.com/yitu-opensource/T2T-ViT#train). 2021/01/28: release codes and upload most of the pretrained models of T2T-ViT.

## Reference If you find this repo useful, please consider citing: ``` @InProceedings{Yuan_2021_ICCV, author = {Yuan, Li and Chen, Yunpeng and Wang, Tao and Yu, Weihao and Shi, Yujun and Jiang, Zi-Hang and Tay, Francis E.H. and Feng, Jiashi and Yan, Shuicheng}, title = {Tokens-to-Token ViT: Training Vision Transformers From Scratch on ImageNet}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, month = {October}, year = {2021}, pages = {558-567} } ``` Our codes are based on the [official imagenet example](https://github.com/pytorch/examples/tree/master/imagenet) by [PyTorch](https://pytorch.org/) and [pytorch-image-models](https://github.com/rwightman/pytorch-image-models) by [Ross Wightman](https://github.com/rwightman) ## 1. Requirements [timm](https://github.com/rwightman/pytorch-image-models), pip install timm==0.3.4 torch>=1.4.0 torchvision>=0.5.0 pyyaml data prepare: ImageNet with the following folder structure, you can extract imagenet by this [script](https://gist.github.com/BIGBALLON/8a71d225eff18d88e469e6ea9b39cef4). ``` │imagenet/ ├──train/ │ ├── n01440764 │ │ ├── n01440764_10026.JPEG │ │ ├── n01440764_10027.JPEG │ │ ├── ...... │ ├── ...... ├──val/ │ ├── n01440764 │ │ ├── ILSVRC2012_val_00000293.JPEG │ │ ├── ILSVRC2012_val_00002138.JPEG │ │ ├── ...... │ ├── ...... ``` ## 2. T2T-ViT Models | Model | T2T Transformer | Top1 Acc | #params | MACs | Download| | :--- | :---: | :---: | :---: | :---: | :---: | | T2T-ViT-14 | Performer | 81.5 | 21.5M | 4.8G | [here](https://github.com/yitu-opensource/T2T-ViT/releases/download/main/81.5_T2T_ViT_14.pth.tar)| | T2T-ViT-19 | Performer | 81.9 | 39.2M | 8.5G | [here](https://github.com/yitu-opensource/T2T-ViT/releases/download/main/81.9_T2T_ViT_19.pth.tar)| | T2T-ViT-24 | Performer | 82.3 | 64.1M | 13.8G | [here](https://github.com/yitu-opensource/T2T-ViT/releases/download/main/82.3_T2T_ViT_24.pth.tar)| | T2T-ViT-14, 384 | Performer | 83.3 | 21.7M | | [here](https://github.com/yitu-opensource/T2T-ViT/releases/download/main/83.3_T2T_ViT_14.pth.tar)| | T2T-ViT-24, Token Labeling | Performer | 84.2 | 65M | | [here](https://github.com/yitu-opensource/T2T-ViT/releases/download/main/84.2_T2T_ViT_24.pth.tar)| | T2T-ViT_t-14 | Transformer | 81.7 | 21.5M | 6.1G | [here](https://github.com/yitu-opensource/T2T-ViT/releases/download/main/81.7_T2T_ViTt_14.pth.tar) | | T2T-ViT_t-19 | Transformer | 82.4 | 39.2M | 9.8G | [here](https://github.com/yitu-opensource/T2T-ViT/releases/download/main/82.4_T2T_ViTt_19.pth.tar) | | T2T-ViT_t-24 | Transformer | 82.6 | 64.1M | 15.0G| [here](https://github.com/yitu-opensource/T2T-ViT/releases/download/main/82.6_T2T_ViTt_24.pth.tar) | The 'T2T-ViT-14, 384' means we train T2T-ViT-14 with image size of 384 x 384. The 'T2T-ViT-24, Token Labeling' means we train T2T-ViT-24 with [Token Labeling](https://github.com/zihangJiang/TokenLabeling). The three lite variants of T2T-ViT (Comparing with MobileNets): | Model | T2T Transformer | Top1 Acc | #params | MACs | Download| | :--- | :---: | :---: | :---: | :---: | :---: | | T2T-ViT-7 | Performer | 71.7 | 4.3M | 1.1G | [here](https://github.com/yitu-opensource/T2T-ViT/releases/download/main/71.7_T2T_ViT_7.pth.tar)| | T2T-ViT-10 | Performer | 75.2 | 5.9M | 1.5G | [here](https://github.com/yitu-opensource/T2T-ViT/releases/download/main/75.2_T2T_ViT_10.pth.tar)| | T2T-ViT-12 | Performer | 76.5 | 6.9M | 1.8G | [here](https://github.com/yitu-opensource/T2T-ViT/releases/download/main/76.5_T2T_ViT_12.pth.tar) | ### Usage The way to use our pretrained T2T-ViT: ``` from models.t2t_vit import * from utils import load_for_transfer_learning # create model model = t2t_vit_14() # load the pretrained weights load_for_transfer_learning(model, /path/to/pretrained/weights, use_ema=True, strict=False, num_classes=1000) # change num_classes based on dataset, can work for different image size as we interpolate the position embeding for different image size. ``` ## 3. Validation Test the T2T-ViT-14 (take Performer in T2T module), Download the [T2T-ViT-14](https://github.com/yitu-opensource/T2T-ViT/releases/download/main/81.5_T2T_ViT_14.pth.tar), then test it by running: ``` CUDA_VISIBLE_DEVICES=0 python main.py path/to/data --model t2t_vit_14 -b 100 --eval_checkpoint path/to/checkpoint ``` The results look like: ``` Test: [ 0/499] Time: 2.083 (2.083) Loss: 0.3578 (0.3578) Acc@1: 96.0000 (96.0000) Acc@5: 99.0000 (99.0000) Test: [ 50/499] Time: 0.166 (0.202) Loss: 0.5823 (0.6404) Acc@1: 85.0000 (86.1569) Acc@5: 99.0000 (97.5098) ... Test: [ 499/499] Time: 0.272 (0.172) Loss: 1.3983 (0.8261) Acc@1: 62.0000 (81.5000) Acc@5: 93.0000 (95.6660) Top-1 accuracy of the model is: 81.5% ``` Test the three lite variants: T2T-ViT-7, T2T-ViT-10, T2T-ViT-12 (take Performer in T2T module), Download the [T2T-ViT-7](https://github.com/yitu-opensource/T2T-ViT/releases/download/main/71.7_T2T_ViT_7.pth.tar), [T2T-ViT-10](https://github.com/yitu-opensource/T2T-ViT/releases/download/main/75.2_T2T_ViT_10.pth.tar) or [T2T-ViT-12](https://github.com/yitu-opensource/T2T-ViT/releases/download/main/76.5_T2T_ViT_12.pth.tar), then test it by running: ``` CUDA_VISIBLE_DEVICES=0 python main.py path/to/data --model t2t_vit_7 -b 100 --eval_checkpoint path/to/checkpoint ``` Test the model T2T-ViT-14, 384 with 83.3\% top-1 accuracy: ``` CUDA_VISIBLE_DEVICES=0 python main.py path/to/data --model t2t_vit_14 --img-size 384 -b 100 --eval_checkpoint path/to/T2T-ViT-14-384 ``` ## 4. Train Train the three lite variants: T2T-ViT-7, T2T-ViT-10 and T2T-ViT-12 (take Performer in T2T module): If only 4 GPUs are available, ``` CUDA_VISIBLE_DEVICES=0,1,2,3 ./distributed_train.sh 4 path/to/data --model t2t_vit_7 -b 128 --lr 1e-3 --weight-decay .03 --amp --img-size 224 ``` The top1-acc in 4 GPUs would be slightly lower than 8 GPUs (around 0.1%-0.3% lower). If 8 GPUs are available: ``` CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 ./distributed_train.sh 8 path/to/data --model t2t_vit_7 -b 64 --lr 1e-3 --weight-decay .03 --amp --img-size 224 ``` Train the T2T-ViT-14 and T2T-ViT_t-14 (run on 4 or 8 GPUs): ``` CUDA_VISIBLE_DEVICES=0,1,2,3 ./distributed_train.sh 4 path/to/data --model t2t_vit_14 -b 128 --lr 1e-3 --weight-decay .05 --amp --img-size 224 ``` ``` CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 ./distributed_train.sh 8 path/to/data --model t2t_vit_14 -b 64 --lr 5e-4 --weight-decay .05 --amp --img-size 224 ``` If you want to train our T2T-ViT on images with 384x384 resolution, please use '--img-size 384'. Train the T2T-ViT-19, T2T-ViT-24 or T2T-ViT_t-19, T2T-ViT_t-24: ``` CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 ./distributed_train.sh 8 path/to/data --model t2t_vit_19 -b 64 --lr 5e-4 --weight-decay .065 --amp --img-size 224 ``` ## 5. Transfer T2T-ViT to CIFAR10/CIFAR100 | Model | ImageNet | CIFAR10 | CIFAR100| #params| | :--- | :---: | :---: | :---: | :---: | | T2T-ViT-14 | 81.5 |[98.3](https://github.com/yitu-opensource/T2T-ViT/releases/download/main/cifar10_t2t-vit_14_98.3.pth) | [88.4](https://github.com/yitu-opensource/T2T-ViT/releases/download/main/cirfar100_t2t-vit-14_88.4.pth) | 21.5M | | T2T-ViT-19 | 81.9 |[98.4](https://github.com/yitu-opensource/T2T-ViT/releases/download/main/cifar10_t2t-vit_19_98.4.pth) | [89.0](https://github.com/yitu-opensource/T2T-ViT/releases/download/main/cifar100_t2t-vit-19_89.0.pth) |39.2M | We resize CIFAR10/100 to 224x224 and finetune our pretrained T2T-ViT-14/19 to CIFAR10/100 by running: ``` CUDA_VISIBLE_DEVICES=0,1 transfer_learning.py --lr 0.05 --b 64 --num-classes 10 --img-size 224 --transfer-learning True --transfer-model /path/to/pretrained/T2T-ViT-19 ``` ## 6. Visualization Visualize the image features of ResNet50, you can open and run the [visualization_resnet.ipynb](https://github.com/yitu-opensource/T2T-ViT/blob/main/visualization_resnet.ipynb) file in jupyter notebook or jupyter lab; some results are given as following:

Visualize the image features of ViT, you can open and run the [visualization_vit.ipynb](https://github.com/yitu-opensource/T2T-ViT/blob/main/visualization_vit.ipynb) file in jupyter notebook or jupyter lab; some results are given as following:

Visualize attention map, you can refer to this [file](https://github.com/jeonsworld/ViT-pytorch/blob/main/visualize_attention_map.ipynb). A simple example by visualizing the attention map in attention block 4 and 5 is: