# TR-Net **Repository Path**: buaaduke/TR-Net ## Basic Information - **Project Name**: TR-Net - **Description**: No description available - **Primary Language**: Python - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-12-16 - **Last Updated**: 2021-12-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Transformer Network for Significant Stenosis Detection in CCTA of Coronary Arteries The implementation of our MICCAI2021 paper ["Transformer Network for Significant Stenosis Detection in CCTA of Coronary Arteries"](https://arxiv.org/abs/2107.03035).

## Requirements Python 3.6, PyTorch 1.6 and other common packages are listed in [`requirements.txt`](requirements.txt) ## Usage Volume sequences can be obtained from MPR images through [`data_maker.py`](data_maker.py). Cubic volumes are flattened and combined with the corresponding labels to consist of a 1D vectors, and image information sequences are obtained by concatenating these vectors. Both training data and test data are saved as numpy arrays of shape (D, L, N^3), where D indicates the number of data on centerline-level. The path of training data and test data can be set in [`config.py`](config.py), for example: ``` train_dataset_root = './dataset/train_dataset.npy' test_dataset_root = './dataset/test_dataset.npy' ``` ## Citation Please consider citing the project in your publications if it helps your research. The following is a BibTeX reference. The BibTeX entry requires the `url` LaTeX package. ```latex @article{ma2021transformer, title={Transformer Network for Significant Stenosis Detection in CCTA of Coronary Arteries}, author={Ma, Xinghua and Luo, Gongning and Wang, Wei and Wang, Kuanquan}, journal={arXiv preprint arXiv:2107.03035}, year={2021} } ```