# FFNet **Repository Path**: bx-zheng/FFNet ## Basic Information - **Project Name**: FFNet - **Description**: No description available - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-03-19 - **Last Updated**: 2021-08-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # FFNet This repository provides the implementation for video fast-forward with reinforcement learning, i.e. FFNet in our paper: **[FFNet: Video Fast-Forwarding via Reinforcement Learning](http://openaccess.thecvf.com/content_cvpr_2018/papers/Lan_FFNet_Video_Fast-Forwarding_CVPR_2018_paper.pdf)**
![alt text](https://github.com/shuyueL/FFNet/blob/master/image/model_2.png "FFNet overview") If you find the codes or other related resources from this repository useful, please cite the following paper: ``` @inproceedings{lan2018ffnet, title={FFNet: Video Fast-Forwarding via Reinforcement Learning}, author={Lan, Shuyue and Panda, Rameswar and Zhu, Qi and Roy-Chowdhury, Amit K}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, pages={6771--6780}, year={2018} } ``` ## Environment - Windows or Linux - NVIDIA GPU with compute capability 3.5+ - Python 3.5 - Tensorflow ## Data The original data we used in paper are available from the following websites * Tour20 dataset: https://vcg.ece.ucr.edu/ * TVSum dataset: https://github.com/yalesong/tvsum ## Codes ### Testing We offer a testing example with a pre-trained model in the ./model directory. Download this repository and run the following command: ``` python nn_test.py ``` The fast-forward result will be in the ./output directory. ### Training If you want to train the model on your own data, you can find the script for training in nn_train.py. For more details, please refer to our paper.