# EEG2Rep **Repository Path**: cai-ganelet/EEG2Rep ## Basic Information - **Project Name**: EEG2Rep - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-10-10 - **Last Updated**: 2025-10-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## EEG2Rep: Enhancing Self-supervised EEG Representation Through Informative Masked Inputs [![KDD 2024](https://img.shields.io/badge/KDD-2024-ff69b4.svg)](https://kdd2024.kdd.org/) ### ✨ **News:** This work has been accepted for publication in **KDD24** ### ✨ 🏆 1st Place in the [Audience Appreciation Awards](https://kdd2024.kdd.org/awards/)! #### Authors: [Navid Mohammadi Foumani](https://scholar.google.com.au/citations?user=Ax62P1MAAAAJ&hl=en), [Geoffrey Mackellar](https://www.linkedin.com/in/geoffmackellar/?originalSubdomain=au), [Soheila Ghane](https://www.linkedin.com/in/soheila-ghane/?originalSubdomain=au), [Saad Irtza](), [Nam Nguyen](), [**Mahsa Salehi**](https://research.monash.edu/en/persons/mahsa-salehi) This work follows from the project with [**Emotiv Research**](https://www.emotiv.com/neuroscience-research-education-solutions/), a bioinformatics research company based in Australia, and [**Emotiv**](https://www.emotiv.com/), a global technology company specializing in the development and manufacturing of wearable EEG products. #### EEG2Rep Paper: [PDF](https://dl.acm.org/doi/pdf/10.1145/3637528.3671600) This is a PyTorch implementation of **EEG2Rep: Enhancing Self-supervised EEG Representation Through Informative Masked Inputs**

## Datasets 1. **Emotiv:** To download the Emotiv public datasets, please follow the link below to access the preprocessed datasets, which are split subject-wise into train and test sets. After downloading, copy the datasets to your Dataset directory. [Download Emotiv Public Datasets](https://drive.google.com/drive/folders/1KQyST6VJffWWD8r60AjscBy6MHLnT184?usp=sharing) 2. **Temple University Datasets:** Please use the following link to download and preprocess the TUEV and TUAB datasets. [Download Temple University Datasets](https://github.com/ycq091044/BIOT/tree/main/datasets) ## Setup _Instructions refer to Unix-based systems (e.g. Linux, MacOS)._ This code has been tested with `Python 3.7` and `3.8`. `pip install -r requirements.txt` ## Run To see all command options with explanations, run: `python main.py --help` In `main.py` you can select the datasets and modify the model parameters. For example: `self.parser.add_argument('--epochs', type=int, default=100, help='Number of training epochs')` or you can set the parameters: `python main.py --epochs 100 --data_dir Dataset/Crowdsource` ## Citation If you find **EEG2Rep** useful for your research, please consider citing this paper using the following information: ```` ``` @inproceedings{eeg2rep2024, title={Eeg2rep: enhancing self-supervised EEG representation through informative masked inputs}, author={Mohammadi Foumani, Navid and Mackellar, Geoffrey and Ghane, Soheila and Irtza, Saad and Nguyen, Nam and Salehi, Mahsa}, booktitle={Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining}, pages={5544--5555}, year={2024} } ``` ````