# PyCINRAD **Repository Path**: caisunp/PyCINRAD ## Basic Information - **Project Name**: PyCINRAD - **Description**: 由https://github.com/CyanideCN/PyCINRAD.git同步而来的镜像 - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 16 - **Created**: 2020-07-27 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # PyCINRAD [![Codacy Badge](https://api.codacy.com/project/badge/Grade/932a383368954e8cb37ada9b3d783169)](https://app.codacy.com/app/CyanideCN/PyCINRAD?utm_source=github.com&utm_medium=referral&utm_content=CyanideCN/PyCINRAD&utm_campaign=Badge_Grade_Dashboard) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![Downloads](https://pepy.tech/badge/cinrad)](https://pepy.tech/project/cinrad) Decode CINRAD (China New Generation Weather Radar) data and visualize. [中文说明](https://github.com/CyanideCN/PyCINRAD/blob/master/README_zh.md) **`example` folder contains detailed examples!** ## Installation PyCINRAD supports Python version 3.5 and higher. ``` pip install cinrad ``` You can also download from github page and build from source ``` python setup.py install ``` ## Modules ### cinrad.io Decode CINRAD radar data. ```python from cinrad.io import CinradReader, StandardData f = CinradReader(your_radar_file) #Old version data f = StandardData(your_radar_file) #New standard data f.get_data(tilt, drange, dtype) #Get data f.get_raw(tilt, drange, dtype) ``` The `get_raw` method returns radar records without other geographic information. The `get_data` method returns `xarray.Dataset` with radar records, geographic coordinates, and all extra attributes. So, all benefits of `xarray` can be enjoyed. ```python >>> print(data) Dimensions: (azimuth: 366, distance: 920) Coordinates: * azimuth (azimuth) float32 0.14084807 0.15812683 ... 0.12601277 0.14381513 * distance (distance) float64 0.25 0.5 0.75 1.0 ... 229.2 229.5 229.8 230.0 Data variables: ZDR (azimuth, distance) float64 nan nan nan nan ... nan nan nan nan longitude (azimuth, distance) float64 120.2 120.2 120.2 ... 120.6 120.6 latitude (azimuth, distance) float64 35.99 35.99 36.0 ... 38.04 38.04 height (azimuth, distance) float64 0.1771 0.1792 0.1814 ... 5.218 5.227 Attributes: elevation: 0.48339844 range: 230 scan_time: 2020-05-17 11:00:28 site_code: Z9532 site_name: 青岛 site_longitude: 120.23028 site_latitude: 35.98861 tangential_reso: 0.25 nyquist_vel: 8.37801 task: VCP21D ``` For example, it's very convenient to save data as netcdf format. ```python >>> data.to_netcdf('1.nc') ``` `xarray` also makes interpolation very convenient. ```python >>> data.interp(azimuth=np.deg2rad(300), distance=180) Dimensions: () Coordinates: azimuth float64 5.236 distance int32 180 Data variables: ZDR float64 0.3553 longitude float64 118.5 latitude float64 36.8 height float64 3.6 Attributes: elevation: 0.48339844 range: 230 scan_time: 2020-05-17 11:00:28 site_code: Z9532 site_name: 青岛 site_longitude: 120.23028 site_latitude: 35.98861 tangential_reso: 0.25 nyquist_vel: 8.37801 task: VCP21D ``` #### Export data to `Py-ART` defined class Convert data structure defined in this module into `pyart.core.Radar` is very simple. `cinrad.io.export` has a function `standard_data_to_pyart`, which can take `cinrad.io.StandardData` as input and return `pyart.core.Radar` as output. `example` folder contains a simple demo about this. #### Decode PUP data and SWAN data `cinrad.io.PUP` provides functions to decode PUP data. The extracted data can be further used to create PPI. `cinrad.io.SWAN` provides similar interface to decode SWAN data. ```python from cinrad.io import PUP f = PUP(your_radar_file) data = f.get_data() ``` ### cinrad.utils This submodule provides some useful algorithms in radar meteorology. All functions only accept `numpy.ndarray` as input data. This submodule extends the usage of this program, as these functions can accept customized data rather than only the data decoded by `cinrad.io`. ### cinrad.calc For direct computation of decoded data, `cinrad.calc` provides functions that simplify the process of calculation. For functions contained in this submodule, only a list of reflectivity data is required as the argument. Code to generate the required list: ```python r_list = [f.get_data(i, 230, 'REF') for i in f.angleindex_r] # or r_list = list(f.iter_tilt(230, 'REF')) ``` #### VCS `cinrad.calc.VCS` provides calculation of vertical cross-section for **all variables**. ```python import cinrad from cinrad.visualize import Section f = cinrad.io.CinradReader(your_radar_file) rl = [f.get_data(i, 230, 'REF') for i in f.angleindex_r] vcs = cinrad.calc.VCS(rl) sec = vcs.get_section(start_cart=(111, 25.5), end_cart=(112, 26.7)) # pass geographic coordinates (longitude, latitude) sec = vcs.get_section(start_polar=(115, 350), end_polar=(130, 30)) # pass polar coordinates (distance, azimuth) fig = Section(sec) fig('D:\\') ``` #### Radar mosaic `cinrad.calc.GridMapper` can merge different radar scans into a cartesian grid. #### Hydrometeor classification `cinrad.calc.hydro_class` uses algorithm suggested by Dolan to classify hydrometeors into 10 categories. (Requires REF, ZDR, RHO, and KDP) ### cinrad.correct This submodule provides algorithms to correct raw radar fields. #### cinrad.correct.dealias This function can unwrap the folded velocity using algorithm originated from `pyart`. (needs C compiler) ```python import cinrad #(some codes omitted) v = f.get_data(1, 230, 'VEL') v_corrected = cinrad.correct.dealias(v) ``` ### cinrad.visualize Visualize the data stored in acceptable format (`cinrad.datastruct`). It also means that you can using customized data to perform visualization, as long as the data is stored as `xarray.Dataset` and constructed by the same protocol (variables naming conventions, data coordinates and dimensions, etc.) For further information about this method, please see the examples contained in `example` folder. ```python from cinrad.visualize import PPI fig = PPI(R) #Plot PPI fig('D:\\') #Pass the path to save the fig from cinrad.visualize import Section fig = Section(Slice_) #Plot VCS fig('D:\\') ``` The path passed into the class can either be the folder path or the file path. Also, if no path is passed, the figure will be saved at the folder named `PyCINRAD` in the home folder (e.g. `C:\Users\tom`). #### Customize plot settings The summary of args that can be passed into `PPI` are listed as follows. |arg|function| |:-:|:-:| |`cmap`|colormaps used for plotting| |`norm`|norm used for plotting| |`nlabel`|number of labels on the colorbar| |`label`|labels on the colorbar| |`highlight`|highlight area of input name| |`dpi`|dpi of figure| |`extent`|area to plot e.g. `extent=[90, 91, 29, 30]`| |`section`|cross-section data to ppi plot| |`style`|control the background color `black` or `white`| |`add_city_names`|annotate name of city on the plot| Beside args, class `PPI` has some other auxiliary plotting functions. ##### PPI.plot_range_rings(self, _range, color='white', linewidth=0.5, **kwargs) Plot range rings on the PPI plot. ##### PPI.plot_cross_section(self, data, ymax=None) Plot VCS section under the PPI plot. This function is very similar to `vcs` argument of class `PPI`, but the range of y-axis can be adjusted only by this function. ##### PPI.storm_track_info(self, filepath) Plot PUP STI product on the current PPI map, including past positions, current position, and forecast positions. ## Gallery #### PPI reflectivity ![PPI reflectivity](https://raw.githubusercontent.com/CyanideCN/PyCINRAD/master/pictures/Z9735_20180304125031_0.6_230_REF.png) #### PPI reflectivity combined with cross-section ![PPI reflectivity combined with cross-section](https://raw.githubusercontent.com/CyanideCN/PyCINRAD/master/pictures/Z9735_20180304120845_0.6_230_REF.png) #### Cross-section ![Cross-section](https://raw.githubusercontent.com/CyanideCN/PyCINRAD/master/pictures/Z9735_20180304004209_VCS_25.5N111E_26.5N112E.png) #### Cross-section other than reflectivity ![ZDR cross-section](https://raw.githubusercontent.com/CyanideCN/PyCINRAD/master/pictures/Z9574_20190321025715_0.5_230_ZDR_29.47N121.44E_29.4N122.04E.png) #### RHI reflectivity ![RHI reflectivity](https://raw.githubusercontent.com/CyanideCN/PyCINRAD/master/pictures/XXX_XXX_RHI_299_100_REF.png) ## Papers that use plots generated by `PyCINRAD` 1. Recognition and Analysis of Biological Echo Using WSR-88D Dual-polarization Weather Radar in Nanhui of Shanghai doi: 10.16765/j.cnki.1673-7148.2019.03.015 ## Notes The hydrometeor classfication algorithm comes from Dolan, B., S. A. Rutledge, S. Lim, V. Chandrasekar, and M. Thurai, 2013: A Robust C-Band Hydrometeor Identification Algorithm and Application to a Long-Term Polarimetric Radar Dataset. J. Appl. Meteor. Climatol., 52, 2162–2186, https://doi.org/10.1175/JAMC-D-12-0275.1. If you are interested in this program, you can join the developers of this program. Any contribution is appreciated! If you have questions or advise about this program, you can create an issue or email me at 274555447@qq.com.